
Knowledge and Information Systems (2023) 65:4797–4846
https://doi.org/10.1007/s10115-023-01910-w

REGULAR PAPER

Continuous prediction of a time intervals-related pattern’s
completion

Nevo Itzhak1 · Szymon Jaroszewicz2,3 · Robert Moskovitch1

Received: 2 December 2022 / Revised: 27 April 2023 / Accepted: 11 May 2023 /
Published online: 24 June 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
In many daily applications, such as meteorology or patient data, the starting and ending times
of the events are stored in a database, resulting in time interval data. Discovering patterns from
time interval data can reveal informative patterns, in which the time intervals are related by
temporal relations, such as before or overlaps. Whenmultiple temporal variables are sampled
in a variety of forms, and frequencies, as well as irregular events that may or may not have
a duration, time intervals patterns can be a powerful way to discover temporal knowledge,
since these temporal variables can be transformed into a uniform format of time intervals.
Predicting the completion of such patterns can be used when the pattern ends with an event
of interest, such as the recovery of a patient, or an undesirable event, such as a medical
complication. In recent years, an increasing number of studies have been published on time
intervals-related patterns (TIRPs), their discovery, and their use as features for classification.
However, as far as we know, no study has investigated the prediction of the completion of a
TIRP. The main challenge in performing such a completion prediction occurs when the time
intervals are coinciding and not finished yet which introduces uncertainty in the evolving
temporal relations, and thus on the TIRP’s evolution process. To overcome this challenge,
we propose a new structure to represent the TIRP’s evolution process and calculate the
TIRP’s completion probabilities over time. We introduce two continuous prediction models
(CPMs), segmented continuous prediction model (SCPM), and fully continuous prediction
model (FCPM) to estimate the TIRP’s completion probability. With the SCPM, the TIRP’s
completion probability changes only at theTIRP’s time intervals’ starting or ending point. The
FCPM incorporates, in addition, the duration between the TIRP’s time intervals’ starting and

B Nevo Itzhak
nevoit@post.bgu.ac.il

Szymon Jaroszewicz
s.jaroszewicz@ipipan.waw.pl

Robert Moskovitch
robertmo@bgu.ac.il

1 Department of Software and Information Systems Engineering, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

3 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01910-w&domain=pdf

4798 N. Itzhak et al.

ending time points. A rigorous evaluation of four real-life medical and non-medical datasets
was performed. The FCPM outperformed the SCPM and the baseline models (random forest,
artificial neural network, and recurrent neural network) for all datasets. However, there is a
trade-off between the prediction performance and their earliness since the new TIRP’s time
intervals’ starting and ending time points are revealed over time, which increases the CPM’s
prediction performance.

Keywords Time interval data · Time interval patterns · Continuous prediction

1 Introduction

Using frequent temporal patterns, such as sequential patterns, time intervals-based patterns,
or time series trends, whether provided by a domain expert or discovered by a mining pro-
cess [1–5], were used for temporal knowledge discovery [6], clustering [7], or as features for
classification [8–11] or prediction of certain outcomes [12, 13]. Estimating the completion
probability of a temporal pattern of interest can be used for predicting the future state of
ongoing cases in a process [14–16] or when a temporal pattern ends with an event of interest,
such as the recovery of a patient, or an undesirable event, such as death or a medical compli-
cation. In medicine, for example, it can be used to continuously predict a clinical outcome of
a monitored patient in an intensive care unit (ICU) [12, 17–19], where the clinical team needs
to be warned of potential complications to enable early intervention and ideally, prevention.
For example, an acute blood pressure elevation [12] was one of the undesirable events used in
this study, in which the data were extracted from real ICU patients. Additionally, in predictive
maintenance, it is desirable to continuously monitor essential machinery’s condition to track
performance and detect possible defects that could result in a system crash.

The idea of predicting the temporal patterns’ completion was applied with sequential
patterns in several domains, such as complex activity recognition [8, 20, 21] and recom-
mendations [22, 23]. However, many events in daily applications, such as meteorology data,
stock fluctuations, or patient data, are not instantaneous events. In some domains, events
may last along a certain time period, in which the starting and ending times are known and
stored in a database, which results in symbolic time interval data. Discovering patterns while
considering the starting and ending times of events can reveal more informative patterns. For
example, a pattern from time interval data may be that hospitalized patients with COVID-19
frequently start with symptoms of “fever” and “cough,” and a week or so later also begin
experiencing shortness of breath [24], in which the symptoms were not ended until the ICU
admission time.

In previous studies, models based on time intervals patterns [12, 13, 19] or symbolic time
points [25] achieved better classification performance than using deep neural networks on the
raw temporal data. An explanation for that could be due to the neural networks’ limitations
as they require a large amount of data, and sparsity occurs when handling heterogeneous
multivariate temporal data with different granularity. In this paper, we investigate the usage
of time interval patterns in a novel manner that differs from the approaches found in the
existing literature. The main innovation of this paper is the introduction of the problem,
challenges, and our proposed methodology for a continuous time intervals-related pattern
completion estimation, which, as far as we know, no previous study has investigated. The
paper presents a methodology for continuously predicting the completion of a time intervals-

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4799

Fig. 1 Schematic and endpoints representation of Allen’s seven temporal relations between a pair of STIs (A
and B, in this figure)

related pattern, based on partial information, which can be applied to various domains and
applications such as predictive process monitoring or clinical event prediction.

A symbolic time interval (STI) consists of starting and ending points and a symbol from
an ordered alphabet. For simplicity, the denotation of an STI will be identical to its symbol
throughout the paper. Additionally, A+ and A- are usedwhen the starting and ending point of
STI A are referred to (formal definitions are introduced in Sect. 2). To represent the temporal
relation between each pair of STIs, typically, Allen’s temporal intervals algebra [26] is used
(see Fig. 1). A time intervals-related pattern (TIRP) is defined by a set of ordered STIs
and the conjunction of all the temporal relations between each pair of those STIs [2–4,
27]. For example, the TIRP illustrated in Fig. 2 is defined by four STIs and six temporal
relations (Fig. 2.ii). The durations of the TIRP STIs are not part of their definition, which
enables the discovery and detection of frequent TIRPs. Since the TIRP’s STIs’ duration
may vary from different pattern’s instances, the schematic representation (Fig. 2.i) presents a
possible instance of the pattern. The task of continuous estimation of a TIRP’s completion is
challenging, mainly due to the variability in the STIs’ duration and gaps between the STIs of
the pattern’s instances, and in this study, we introduce and propose solutions. However, the
temporal variables may be of heterogeneous nature, such as inmedicine, whichmight contain
lab test results [18], drug exposure periods, or the body’s vital signs [12]. As explained in
the next paragraph, time interval mining methods are suitable for analyzing heterogeneous
multivariate data that were transformed into a uniform representation of STIs.

The growing collection and availability of time-stamped electronic data in various
domains, such as transportation [28], medicine [29], and security [30], provides excep-
tional opportunities to discover new actionable temporal knowledge from multivariate,
time-oriented data. As shown in Fig. 3, the temporal variables could be sampled at a fixed fre-
quency (Fig. 3.FF), obtained by irregular sampling (Fig. 3.IS), represented by instantaneous
events (Fig. 3.IE) or events with duration (Fig. 3.STI). Traditional time series analysis meth-
ods cannot often incorporate such heterogeneous longitudinal data and expect all the variables
to be sampled in the same fixed frequency. Other methods, such as sequential mining, can

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4800 N. Itzhak et al.

Fig. 2 A schematic representation (i) and temporal relations conjunction (ii) of a TIRP that has four STIs and
six Allen’s temporal relations

Fig. 3 An entity described by heterogeneous multivariate temporal data, containing: fixed frequency (FF)
sampling, irregular sampling (IS), instantaneous events (IE), and raw STIs. The temporal abstraction process
transforms a series of raw time-stamped data points into a uniform representation of the STIs series

analyze only instantaneous events (Fig. 3.IE), but not events with a duration (Fig. 3.STI). For
that, temporal abstraction [9, 31, 32] is increasingly being used to transform various temporal
variables into a uniform representation of STIs. Thus, using TIRPs and continuously estimat-
ing their completion can be useful in any temporal variables’ forms, which makes it widely
applicable in various real-life data. For example, in the early prediction of an outcome [12,
18], monitoring temporal progress [14], or detecting temporal abnormalities in a real-time
fashion. Even though temporal abstraction allows considerations of heterogeneous data in a
unified way, it is not necessarily part of the prediction process while using TIRPs, since the
data can be composed of only raw STIs.

Temporal abstraction is typically performed in two ways: state abstraction, in which the
values are classified into states, based on given cutoffs, and later concatenated into STIs,
or gradient abstraction, in which they are segmented into increasing or decreasing peri-
ods according to the first derivative. For example, in Fig. 3, variable V1 is abstracted into
increasing (Inc) and decreasing (Dec) STIs using gradient abstraction, while variable V2 is
abstracted into STIs using state abstraction, based on a single cutoff, into two states: high
(H) or low (L). Once a database of STIs is created, whether abstracted (Fig. 3.V1 and 3.V2)
or raw (Fig. 3.V3 and 3.V4), time intervals analysis can be performed, such as TIRPs simi-
larity [33], a discovery of frequent TIRPs [2–5, 27, 34, 35], or a continuous prediction of a
TIRP’s completion.

However, while continuously predicting the TIRP’s completion, a noticeable problem
ariseswhen the STIs are unfinished and coinciding. This results in uncertainty about the actual
evolving temporal relation between each pair of unfinished coinciding STIs (Definition 5).
Moreover, the representation of transition probabilities among STIs becomes, in such cases,
challenging. In this paper, we propose a new representation to overcome those challenges

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4801

that are unique for TIRPs since they include STIs that may have various potential pairwise
temporal relations. In contrast, those challenges do not exist in sequential patterns, in which
the events are instantaneous, and the temporal relations are only before or co-occur with other
events. This sequential pattern’s property makes it easier to define the pattern’s evolution
process since there is no uncertainty about temporal relations between its instantaneous
events.

This paper focuses on predicting the completion probability for a single TIRP, which
proved to be a sufficiently challenging problem. The models were evaluated separately on
TIRPs, ending with a target event of interest. In the future, we intend to expand the proposed
methods to continuously consider multiple patterns. Considering multiple patterns can be
used for continuous prediction of real-life tasks such as outcome prediction of common
complications in critically ill patients [12, 18].
A model based on multiple patterns that end with the event of interest is expected to be
more accurate, have better data coverage, and improve generalization over models based on
a single pattern.
The main contributions of the paper are:

1. Defining the problem of the continuous prediction of a TIRP’s completion and noting the
unfinished coinciding STIs challenge. Then, we propose a representation to overcome this
challenge.

2. Introducing novel methods for continuous prediction of a TIRP’s completion and evalu-
ating them on real-life medical and non-medical datasets.

The rest of this paper is organized as follows: we start by reviewing the literature (Sect. 2),
considering topics of temporal abstraction and relations, time interval data analysis and
their applications, and sequential patterns’ completion. We then proceed with the Problem
Statement and Methods (Sects. 3 and 4), Evaluation and Results (Sects. 5 and 6), and finally
summarize the work, present conclusions, and discuss future work (Sect. 7).

2 Background

2.1 Temporal abstraction

Temporal abstraction refers to the process of transforming continuous raw heterogeneous
temporal data into a series of STIs (seeDefinition 1). Such a representation provides a uniform
format for the heterogeneous temporal variables (e.g., time series [36, 37] or instantaneous
events), enabling the analysis of their temporal relations.

Definition 1 A symbolic time interval (STI) I = (s, e, sym), is a triplet of start-time s ∈ R≥0,
end-time e ∈ R≥0, e ≥ s and a symbol sym (sym ∈ �) from an ordered alphabet �.

For simplicity, the denotation of an STI will be identical to its symbol throughout the
paper. Additionally, Is and Ie are used when the start-time and end-time of STI I are referred
to.

Definition 2 A time interval endpoint (tiep) is a triplet (t, t ype, sym) consisting of a time
stamp t ∈ R≥0, an endpoint type, which can be either starting (+) or ending (-), and a symbol
(sym ∈ �) from an ordered alphabet �.

The total order of a set of tieps (see Definition 2) is defined based on their time stamps,
which are real numbers. For an STI A = (As, Ae, “A”), the starting and ending tieps are

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4802 N. Itzhak et al.

defined, respectively, as A+ = (As,+, “A”) and A- = (Ae,-, “A”). Based on this notation
and the total order between real numbers, the tieps can be used in inequalities defining
temporal relations, while their structure will be exploited in algorithms in the following
sections.

Typically, there are two temporal abstraction approaches, gradient, and state abstraction,
as explained in the Introduction (Sect. 1) and illustrated in Fig. 3. The gradient abstraction
determines the change direction of the variable values, such as increasing heart rate values.

For example, in Fig. 3, variable V1 is abstracted into an interval-based representation
using gradient abstraction based on the first derivative having two values: increasing (Inc)
and decreasing (Dec).

When state abstraction is used, the cutoffs can be given by a domain expert or acquired in
a data-driven fashion. For example, in Fig. 3, variable V2 is abstracted into an interval-based
representation using state abstraction, based on a single cutoff, into two states: high (H) and
low (L). A few data-driven methods exist to determine these cutoffs [38], but we list those
commonly used for time-based data. The most basic one is the equal width discretization
(EWD) that divides the range of values uniformly into bins with the same value range. Equal
frequency discretization (EFD) aims at having bins leading to uniform distribution of values
in bins, or equivalently, equal probabilities of ending up in each bin; the cutoffs are determined
accordingly. A popular method for time series discretization in the data mining community
is symbolic aggregate approximation (SAX) [39]. SAX reduces the temporal dimensionality
and transforms the time series into symbolic strings assuming that the processed data follows
the Gaussian distribution.

An important part of the temporal abstraction process is choosing a suitable granular-
ity of representation for the raw data, which should reduce noise, economize storage, and
speed up temporal data processing. A well-defined procedure, named piecewise aggregate
approximation (PAA) [40, 41], reduces dimensions longitudinally (increasing the temporal
granularity) and is used in this paper. It is based on dividing the temporal data into equal
duration segments, represented by each segment’s mean values.

2.2 Temporal relations

Allen [26] defined seven temporal relations (and their inverses) between a pair of STIs. The
seven temporal relations: before (<), meets (m), overlaps (o), starts (s), finished-by (f i),
equals (=), and contains (c) are shown in Fig. 1. Let us now define the lexicographical order
between STIs.

Definition 3 A lexicographical STI series I S is an STI series, sorted in the lexicographical
order of the starting tiep, ending tiep, and symbol (sym), i.e., I S = {I 1, ..., I k}, such that:
∀I i , I j ∈ I S (i < j) ∧ [(I i+ < I j+) ∨ ((I i+ = I j+) ∧ (I i- < I j-)) ∨ ((I i+ =
I j+) ∧ (I i- = I j-) ∧ (I i

sym < I j
sym))].

In this study, the STIs will always be ordered lexicographically. Thus, the seven temporal
relations can be used without their corresponding inverse relations. Additionally, in a specific
STI series, the exact events cannot co-occur, and as a result, STIs with the same symbols
cannot overlap.

Allen’s temporal relations are based on the assumption that an event has a starting and
an ending point. Freska [42] has modified Allen’s interval-based representation of temporal
relations such that they can be used, rather naturally, for reasoning with incomplete knowl-
edge. Relations among semi-intervals rather than intervals are used as the basic knowledge

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4803

units. Semi-intervals correspond to temporal beginnings or endings of events. In this study,
Allen’s seven temporal relations are used; however, the challenges with incomplete knowl-
edge discussed in Freska’s study [42] were considered to address uncertainties during the
continuous prediction.

2.3 Frequent TIRP discovery

Once the data are transformed into a series of STIs, time intervals-related patterns can be
discovered. We refer to these discovered STIs-based patterns as TIRPs and define them
formally in Definition 4.

Definition 4 A non-ambiguous lexicographic time intervals-related pattern (TIRP) Q is
defined as a pair Q = (I S, R), where I S = {I 1, . . . , I k} is a lexicographical STI series
(Definition 3) of k STIs and R = {r(I i , I j) : 1 ≤ i < j ≤ k} is a set that defines all the
temporal relations between each of the (k2 − k)/2 pairs1 of STIs in I S.

An example schematic representation and the corresponding conjunction of temporal
relations of a TIRP are presented in Fig. 2. The conjunction of the temporal relations, typ-
ically presented using the half matrix representation (Fig. 2.ii), constitutes a canonical,
non-ambiguous representation of pairwise temporal relations among the STIs of a lexi-
cographically ordered TIRP. The half matrix representation (as opposed to the full matrix)
is possible because each of Allen’s seven temporal relations has an inverse. The canonical
aspect is due to the lexicographical ordering leading to a unique half matrix for each TIRP.
In contrast, the schematic representation (Fig. 2.i) presents one of many possible instances
of the pattern. The STIs’ durations are not part of a pattern definition, and other instances of
the same pattern might have different durations of STIs.

Apattern is called frequent if its vertical support exceeds a pre-definedminimum threshold.
Given a database DB of |DB| unique entities, the vertical support V S(DB, Q) of a TIRP
Q is denoted by the cardinality of the set DB Q of distinct entities within which Q holds at
least once, divided by the total number of entities |DB|, V S(DB, Q) = |DB Q |/|DB|.

Several TIRP mining methods have been developed in the past two decades [4, 5, 27,
34, 35], most of which use Allen’s definition to represent relations between pairs of STIs,
which are used to define a TIRP. Hoppner [2] was the first to define non-ambiguous TIRPs
(Definition 4) using a set of STIs and the conjunction of the temporal relations between each
pair of STIs. Papapetrou [3] proposed a hybrid approach (H-DFS), which first indexes the
pairs of time intervals and extends frequent TIRPs. Moskovitch and Shahar [27] introduced
the KarmaLego algorithm that exploits the transitivity of temporal relations [26] to generate
candidates efficiently and completely, which we use in this study. More details about the
evolution of time interval mining can be found in [5, 34, 35].

2.4 Applications of frequent TIRPs

Frequent TIRPs are typically used as features for multivariate time series classification or
prediction, as proposed first by Patel et al. [10]. The approach was inspired by the bag-of-
words representation in text categorization [43], in which words are used as features for the
classification of a given document. Batal et al. [11] proposed classifying electronic health

1 The formula (k2 − k)/2 follows from the binomial coefficient
(k
2
) = k(k − 1)/2 = (k2 − k)/2, where 2

stands for pairs of temporal relations and k is the number of STIs.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4804 N. Itzhak et al.

records (EHR) data using a small set of predictive and non-spurious TIRPs. The Maitreya
framework for outcomes prediction in EHR data based on frequent TIRPs was suggested by
Moskovitch et al. [44]. The framework learns frequent TIRPs only from patients having the
outcome, using the KarmaLego algorithm. Then, the patients’ TIRPs are detected in both
classes, and a classifier is induced. The framework was recently extended to predict acute
hypertensive episodes in ICU patients [12] and the first fall in older care home residents [45].

The extracted TIRPs were used independently as features for the classifier in the afore-
mentioned studies while ignoring the longitudinal order within those TIRPs. To address this
challenge, Novitski et al. [13] proposed to feed sequential neural networks with the extracted
frequent TIRPs. This approach was reported to be more accurate than using sequential neural
networks trained on raw data for predicting mortality in elderly patients with diabetes. Liu
et al. [21] suggested a semantic-based probabilistic framework for STI data that can be used
to answer varied semantic-level queries in a unified way, such as predicting future activi-
ties given observed ones. However, their paper focused on classification in the domain of
human activity recognition while ignoring the unfinished coinciding STIs challenge, which
is necessary to continuously predict STI data.

To the best of our knowledge, no previous study has investigated the task of continuous
prediction of a TIRP’s completion.

2.5 Sequential patterns’ completion

Prediction of sequential patterns’ completion is useful inmany tasks, such as complex activity
recognition [8, 20, 21] and recommendations [22, 23]. In code recommendations, it was
suggested to use sequential patterns to mine coding patterns from the project repository, and
once the developer’s code coincides with a beginning of a sequential pattern, the pattern
is suggested [23]. Zhu et al. [22] introduced a recommendation system for travel products
that is based on frequent sequential patterns, in which the sequential patterns comprised of
the visited web pages’ semantic descriptions and their target products. A model based on
frequent sequential patterns is trained to recommend the highest-scored target product given
a user’s click-stream.

In sequential patterns, the temporal relation between each pair of a pattern’s items is
restricted to an item being before or co-occurring with other items. This property makes
it easier to define the pattern’s evolution process, avoiding the uncertainty about temporal
relations between items. In contrast, when continuously predicting a TIRP’s completion in
STI data, a noticeable problem arises when the STIs are coinciding and unfinished.

Meaningful contributions have been made in the past two decades in analyzing STI
data [2–5, 27] and its use in multivariate temporal data analysis after employing tempo-
ral abstraction [10, 12, 46]. However, continuous prediction of a TIRPs’ completion, which
can be used for ongoing events prediction, was not studied yet. Our study proposes a novel
approach for a continuous TIRP’s completion prediction in heterogeneous multivariate tem-
poral data, which addresses the unfinished coinciding STIs challenge and considers the
durations between the TIRP’s STIs’ tieps to allow for fully continuous prediction.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4805

3 Problem statement

Forasmuch as no previous study has investigated the task of continuous prediction of a
TIRP’s completion, this section is devoted to describing and formalizing the task (Sect. 3.1)
and introducing its fundamental challenges (Sects. 3.2–3.3).

Given raw heterogeneous multivariate temporal data, the data are first converted into an
STI format using temporal abstraction methods (Sect. 2.1). The STIs are used as a uniform
format for analyzing the temporal relations among them (Sect. 2.2). Then, a TIRP of interest
can be discovered from the STI data using time intervals mining methods (Sect. 2.3) or can
be provided by domain experts.

3.1 Problem formulation

A model M estimates the probability of observing the remaining part of a TIRP Q, given
the observed part of Q at tc, which will be referred to as the TIRP Q’s completion. Given a
TIRP Q and a database DB, a continuous prediction model M that estimates the TIRP Q’s
completion probability is created. An estimation is provided at each current time point tc,
and changes as a given instance of Q evolves over time. The database DB comprises |DB|
entities (e.g., patients), where each entity contains a lexicographically ordered STI series
(Definition 3).

We now define several terms which are used to describe our models. Let ptc denote a
prefix representing the observed part of Q at tc, while stc denote a suffix representing the
remaining part of Q at tc that is expected to occur. Note that the TIRP’s prefix notion will
be refined in Sect. 4.1 after presenting the task challenges in this section. Thus, to estimate
the TIRP Q’s completion probability Pr(Q | tc), at time point tc, the following simplistic
model (Formulas 1, 2, and 3) can be used

Pr(Q | tc) = Pr(stc | ptc) (1)

= Pr(ptc , stc)

Pr(ptc)
(2)

= Pr(Q)

Pr(ptc)
. (3)

This simplistic formula typically represents the confidence of a rule in sequential patterns.
However, there is no uncertainty about temporal relations between its instantaneous events in
sequential patterns, making the computation easier. In contrast, continuously predicting the
TIRP’s completion results in uncertainty about the actual evolving temporal relation between
each pair of unfinished coinciding STIs, as we demonstrate in this section.

Formula 1 follows from the fact that the probability Pr(Q | tc) is, by definition, the proba-
bility that the suffix stc occurs, given that, at time tc, the prefix ptc has already been observed.
Formula 2 follows the definition of conditional probability. The denominator Pr(ptc) is the
probability of the prefix ptc to occur, while the numerator Pr(ptc , stc) represents the prob-
ability of the prefix ptc to occur and to be followed by the suffix stc . Lastly, the equality in
Formula 3 results from the fact that the occurrence of ptc followed by stc is equivalent to the
occurrence of the TIRP Q.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4806 N. Itzhak et al.

Fig. 4 A TIRP Q has three STIs: A, B, and C , in which Q = {A overlaps B, A before C , B before C}. At
any time point (e.g., t1c , t2c , t3c , t4c), we aim to estimate the probability of the TIRP Q’s completion

3.2 An overview of model estimation procedure

In this subsection, we illustrate the calculations required for computing the TIRP’s comple-
tion probabilities on a simple example highlighting the problems which arise during such
computations.

To estimate the completion probability of a TIRP Q, we use Formula 3 (Pr(Q)/Pr(ptc)),
and to apply it continuously, we need to count the number of times each ptc of Q occurs
in the database, as well as the number of times ptc is followed by stc (i.e., Q completes).
This calculation answers the following question: “Out of all the times we saw ptc , how
many times was it followed by stc (i.e., Q has unfolded to completion)?” Since the database
DB comprises multiple entities (e.g., patients), and each entity contains a lexicographically
ordered STI series, instances of Q and ptc may be discovered more than once in a single
entity. Each such instance is counted separately in the computation.

Applying Formula 3 to a relatively simple example sheds light on the challenges that arise
while continuously predicting TIRP’s completion. In Fig. 4, a TIRP Q = {A overlaps B,
A before C , B before C} is shown, together with four time points t1c , t2c , t3c , t4c chosen to
demonstrate various types of challenges.

At time point t4c , the observed part of Q is pt4c
= {A overlaps B}, and the remaining

part of Q, that is expected to occur, since STI C was not observed, is st4c
= {A before C ,

B before C}. Formula 4 shows the TIRP Q’s completion probability Pr(Q | t4c) at time t4c
calculated based on Formula 3

Pr(Q | t4c) = Pr(Q)

Pr(A o B)
. (4)

In Formula 4, the numerator Pr(Q) is equal to the probability of seeing Q in DB, and the
denominator Pr(pt4c

) is equal to the probability of seeing A overlaps B. This probability is
calculated by counting the number of times that A overlaps B is followed by A before C and
B before C (i.e., Q) in DB and dividing it by the number of times we see A overlaps B in
DB.

Similar computations can be carried out at time points t1c and t3c , but the situation is more
complex since the time points are located after a starting point and before an ending point of
an STI. Thus, since an STI that is not finished yet is involved, ptc and stc cannot be described
with Allen’s temporal relations. Instead, we need to use a different representation based on
STIs’ tieps (Definition 2). Recalling that A+ denotes the starting tiep of an STI A and A- its
ending tiep.

At t1c , the prefix pt1c
is “A that has started but not ended yet,” and the suffix st1c

is “B starts,
A ends, B ends, C starts, and then C ends.” Accordingly, pt1c

= A+ and st1c
= B+< A-<

B-< C+< C-. Thus, Pr(Q | t1c) is equal to Pr(Q)/Pr(A+), where Pr(A+) denotes the
probability of seeing STI A that has started in DB. In practice, in the database DB, each
STI has its starting and ending tieps, and thus, the probability Pr(A+) equals the probability

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4807

of seeing STI A in DB (Pr(A+)=Pr(A)). Therefore, the probability Pr(Q)/Pr(A) is
calculated by counting the number of times we see TIRP Q in DB and dividing it by the
number of times we see A in DB.

Similarly, at t3c , the pt3c
can be represented by the following inequality between the STIs’

tieps: A+< B+< A-, and st3c
by B-< C+< C-. However, since STI B has started but not

ended yet, its ending tiep B- has to satisfy t3c < B- in database DB (i.e., in the learning
stage). Thus, the prefix’s tiep ordering should be extended to pt3c

= A+< B+< A-< B- to
represent that STI B is not ended. Otherwise, counting the number of times pt3c

occurs in DB
might result in irrelevant instances, such as instances that B- occurred before or co-occurred
with A-, which are not part of the pattern’s evolution process. The extended pt3c

is equivalent
to Allen’s temporal relation A overlaps B (see Fig. 1, right-hand column). Therefore, the
probability Pr(Q | t3c) = Pr(Q)/Pr(A o B) is calculated, as computed at t4c .

In the previously discussed time points, we were able to eventually express the TIRP’s
prefixes using Allen’s temporal relations. However, this may not be possible at other time
points where multiple STIs have started but not yet ended. For example, at time point t2c ,
pt2c

is equivalent to A+< B+, and st2c
to A-< B-< C+< C-. Since pt2c

includes STIs A

and B that have already started but not yet ended (i.e., t2c < A- and t2c < B-), it results in
uncertainty about which temporal relation between A and B will finally unfold. As shown
in Fig. 1, based on A and B’s starting tieps (A+< B+), three different temporal relations
are possible: overlaps, contains, or finished-by, which should be considered and used in
Formula 3. Since this situation happens when the STIs are coinciding and not finished yet,
we call it theunfinished coinciding STIs challenge and explain it inmore detail in the following
subsection.

Note that since the suffix of a TIRP at tc is not required for the TIRP’s completion
computations, this paper focuses on the prefixes of a TIRP.

3.3 The unfinished coinciding STIs challenge

We begin this subsection by formally introducing the notion of an unfinished STI.

Definition 5 An unfinished STI I ∗ at time tc is an STI whose starting tiep I ∗+ satisfies
0 ≤ I ∗+ ≤ tc and whose ending tiep I ∗- satisfies tc < I ∗-.

The asterisk (∗) will indicate that an STI is unfinished throughout the text. The start-time
of an unfinished STI is known at time tc, but its end-time is not. In fact, it is censored: we
only know that it is later than tc.

As we demonstrated in the previous subsection (Sect. 3.2), predicting the future temporal
relations of coinciding STIs is trivial when one of the STIs’ complete information is known,
and no distribution or learning process is needed. However, the problemoccurswhen there are
many possible temporal relations. A few scenarios according to which their Allen’s temporal
relation can evolve for a given pair of unfinished coinciding STIs A∗ and B∗. With no loss of
generality, the starting tieps of the two unfinished STIs A∗ and B∗ satisfy either A∗+= B∗+
or A∗+< B∗+. To denote those situations, we introduce two additional “temporary” temporal
relations between unfinished STIs, illustrated in Fig. 5. The temporary equals (=̌) represents
the temporal relation between a pair of unfinished coinciding STIs A∗ and B∗ having the same
start-time A∗+= B∗+ and is denoted by A∗=̌B∗. When A∗+< B∗+, the temporal relation
will be called temporary finished-by (fǐ) and denoted with A∗fǐB∗.

As shown in Fig. 5, a pair of unfinished coinciding STIs A∗ and B∗ may evolve into
three possible temporal relations. The logic follows from the tieps representation of Allen’s

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4808 N. Itzhak et al.

Fig. 5 The possible temporary temporal relations between unfinished STIs, given that the start-times of a pair
of STIs are known, but their end-times are not

Fig. 6 The possible temporal relations between a finished STI and an unfinished STI

temporal relations that is presented in Fig. 1 in the right-hand column. Figure5.i shows that
in the case of the temporary equals temporal relation, their temporal relation may eventually
evolve into A starts B, or B starts A, or stay A equals B. The reason that A starts B and B
starts A cannot be distinguished at tc is that the exact temporal relation is determined by their
end-times, which are not yet known. Similarly, the temporary finished-by temporal relation
shown in Fig. 5.ii, may eventually evolve into three possible Allen’s temporal relations: A
overlaps B, A contains B, or stay A finished-by B.

For completeness, even though they are not considered part of the unfinished coinciding
STIs challenge, we mention two more scenarios, when the STIs’ start-times and the earlier
STI’s end-time are known. As shown in Fig. 6, when A ends before or simultaneously as B∗
starts (A- ≤ B∗+), the temporal relations before or meets are produced without ambiguity.
The problem described earlier does not occur since it is not a pair of unfinished STIs.

4 Methods

This study investigates the task of continuous prediction of a TIRP’s completion, which was
introduced in Sect. 3. This section presents a way to overcome the unfinished coinciding
STIs challenge (Sect. 3.3) by defining a structure called TIRP-prefix (Sect. 4.1). The TIRP-
prefixes will represent the evolution process of a TIRP and will be used to calculate the
TIRP’s completion probabilities by considering all possible TIRPs that each TIRP-prefix can
evolve to.

Figure 7 illustrates the overall TIRP’s completion model learning and predicting process.
The TIRP’s completion learning process (Fig. 7.I) gets a TIRP of interest and peels the TIRP
into its TIRP-prefixes (Sect. 4.1). Then, the TIRP-prefixes’ instances are detected from the

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4809

Fig. 7 The overall TIRP’s completion (I) model learning and (II) prediction

STIs database (Sect. 4.2-4.3) and used to learn a continuous prediction model (CPM, Sect.
4.4). The TIRP’s completion prediction process (Fig. 7.II) gets an STI series and detects the
TIRP-prefixes’ instances (Sect. 4.3). At any time point, each detected TIRP-prefix’s instance
can be used to estimate the TIRP’s completion probability using the learned CPM. Based on
these probabilities, the early warning strategies (Sect. 4.5) can be used to raise an alert once
there is a high likelihood that the pattern of interest will complete.

4.1 TIRP unfolding over time

Understanding the process of a TIRP’s unfolding over time is necessary for continuous
prediction of the pattern’s completion since only part of the pattern is revealed at each time
point. Since the temporal relation of unfinished coinciding STIs is undetermined until at least
one of their ending tieps is observed, we follow the process of the TIRP unfolding over time
by means of its STIs tieps (Definition 2). The TIRP-prefixes will be used to calculate the
TIRP’s completion probabilities by considering all possible TIRPs that each TIRP-prefix can
evolve to.

Based onDefinition 2, an STI A can be represented by the starting tiep A+ = (As,+, "A")
and the ending tiep A- = (Ae,-, "A"). Consequentially, a TIRP also can be represented by
starting and ending tieps since it is composed of a series of STIs. To express the temporal
relations among the STIs in the series of tieps, the order among the starting and ending
tieps should be considered. Thus, to maintain the conjunction of pairwise temporal relations
among the STIs, the set of tieps needs to be transformed into a sorted tieps’ series, based
on Allen’s tieps representation (Fig. 1, in the right-hand column). For example, the temporal
relation contains between STIs A and B should satisfy the condition A+< B+< B-< A-,
as illustrated in Fig. 1. The sorted tieps series corresponding to a TIRP Q will be denoted
with Qtieps .

For the temporal relationsmeets, finished-by, starts, or equals between a pair of STIs, their
tieps may co-occur and are merged into a single element in the tieps’ series. For example, in
Fig. 8, the temporal relation between STIs B andC ismeets, whichmeans STI B’s ending tiep
(B-) co-occur as STI C’s starting tiep (C+). Since B- and C+ co-occur, they are composed
into a single element and wrapped in rounded brackets (B-, C+).

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4810 N. Itzhak et al.

Fig. 8 The TIRP: {A overlaps B, A before C , B meets C} and its TIRP-prefixes, presented in three ways: (i)
TIRP schematic, (ii) TIRP-prefixes half matrix, and (iii) TIRP-prefixes schematic representation

We now formally define the notion of a TIRP-prefix, which constitutes a single step in the
temporal evolution of a TIRP.

Definition 6 Let Q be a TIRP of length k. A TIRP-prefix Q̌ of Q is defined as a pair Q̌ =
(ˇI S, Ř), where ˇI S is a lexicographical STI series (Definition 3) of ǩ ≤ k finished (ˇI S f) and
unfinished (ˇI S∗) STIs: ˇI S = ˇI S f ∪ ˇI S∗, and Ř is the set of all the temporal relations between
each of the pairs of STIs in ˇI S: Ř = {r(I i , I j) : 1 ≤ i < j ≤ ǩ ∧ ¬(I i ∈ ˇI S∗ ∧ I j ∈ ˇI S∗)}
∪ {ř(I ∗,i , I ∗, j) : 1 ≤ i < j ≤ ǩ ∧ I ∗,i ∈ ˇI S∗ ∧ I ∗, j ∈ ˇI S∗}.

To capture the evolution of a given pattern and to be able to estimate the probability of its
completion at any time point, all the stages in the process need to be considered. To do that,
the pattern is divided into TIRP-prefixes (Definition 6) that are part of the TIRP’s evolution
process, which are created based on sub-sequences of the TIRP’s tieps. In each TIRP-prefix,
since the temporal relation between two unfinished STIs is uncertain, the temporary temporal
relation ř is used to express the disjunction of possible temporal relations based on the
unfinished coinciding STIs challenge logic (Fig. 5).

In Fig. 8, the TIRP Q = {A overlaps B, A before C , B meets C} is presented, with
Qtieps=<A+, B+, A-, (B-, C+), C->. Initially, only A+ is observed, which results in an
unfinished STI A∗. Then, B+ appears, and another TIRP-prefix is revealed, including two
unfinished STIs A∗ and B∗.

At time point t2c , it is already known that A∗+< B∗+< t2c , and since A∗ and B∗ are
unfinished STIs, it can be concluded that t2c < A- and t2c < B-. Thus, as presented in Fig. 5.ii,
the temporal relation between A∗ and B∗ is temporary finished-by (A∗fǐB∗). At t3c , A- is
already known, while STI B∗ is unfinished (t3c < B-), whichmeans that the temporal relation
is overlaps, since the temporal relation endpoint ordering A+< B+< A-< B- is satisfied
(Fig. 1). Similarly, at t4c , B- and C∗+ co-occur, and the TIRP-prefix {A overlaps B, A
before C∗, B meets C∗} is formed. The temporal relation A before C* is obtained since it is
known that A+< A-< C+< t4c < C- and B meets C* (B+< B-= C+< t4c < C-). Lastly,
C- reveals the entire pattern.

The TIRP-prefixes are used to learn a model intended to estimate the probability of the
TIRP’s completion at each time stamp (Sect. 4.4). Whenever a new tiep is encountered, the
model uses the appropriate TIRP-prefix and provides the corresponding TIRP’s completion
probability, given the current time stamp. To create all TIRP-prefixes of a given TIRP during
the learning stage, the TIRP-prefixes revealer algorithm (Algorithm 1) is introduced in the
following subsection.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4811

4.1.1 The TIRP-prefixes revealer algorithm

The TIRP-prefixes revealer algorithm (Algorithm 1) takes as input a TIRP of interest, which
contains a series of STIs (IS) and conjunction of temporal relations between each pair of
the STIs (R), and returns the TIRP-prefixes. Before describing the algorithm, we give an
intuitive explanation of how the algorithm proceeds. The algorithm iterates through the
pattern’s tieps sequence in reverse order, considering in each iteration a single tiep, or more
in case of co-occurring tieps. Based on the current iteration’s tieps, the algorithm reveals
the earlier TIRP-prefix by updating the current TIRP-prefix, considering, if necessary, the
unfinished coinciding STIs challenge (Sect. 3.3). Although a forward-based algorithm could
also be applied, in which each tiep is added, we think that starting with the entire TIRP and
revealing the TIRP-prefixes in a backward order is more intuitive for explaining the process.
For example, in Fig. 8, in the first iteration, the last tiep (C-) is used to create the previous
TIRP-prefix. Initially, the current TIRP-prefix is defined as the entire TIRP, and since C- is
an ending tiep, STI C converted into an unfinished STI C*, and results in the previous TIRP-
prefix: {A overlaps B, A before C*, B meets C*}. The algorithm stops once there are no
more tieps to iterate and returns a list that contains all the TIRP-prefixes of the given TIRP.

Algorithm 1 TIRP-Prefixes Revealer
Input: TIRP - composed of a series of STIs and a conjunction of temporal relations among the STIs.
Output: TIRPrefixes - sorted list of the TIRP-prefixes.

1: TIRPPrefixes ← []
2: revTieps ← getReversedTieps(TIRP) � reverse order of the TIRP’s tieps.
3: currPrefix ← TIRP
4: for each currTieps in revTieps do � currTieps is an element with at least one tiep
5: for each tiep in currTieps do
6: currentSTIsIndex ← getIndexOfCurrentSTI (currPrefix, tiep)
7: if tiep.type == ‘+’ then
8: removeSTI(currPrefix, currentSTIsIndex)
9: else
10: addAsteriskToSymbol(currPrefix, currentSTIsIndex) � e.g., STI I to I*
11: otherUnfSTIs ← getOtherUnfSTIs(currPrefix, currentSTIsIndex)
12: for each UnfSTI in otherUnfSTIs do
13: currRel = getRel(currentSTIsIndex, UnfSTI)
14: if currRel == (’overlaps’ or ’finished-by’ or ’contains’) then
15: changeRel(currentSTIsIndex, UnfSTI, ’temporary finished-by’)
16: else if currRel == (’starts’ or ’equals’) then
17: changeRel(currentSTIsIndex, UnfSTI, ’temporary equals’)
18: TIRPPrefixes.appendLeft(currPrefix) � add by value
19: return TIRPPrefixes

The function getReversedTieps (Algorithm 1, line 2) gets a TIRP and sorts its tieps’
sequence in reversed order of their time stamps. The reverse order sequence, returned
by the function getReversedTieps, is assigned to the variable revTieps. Each element in
revTieps contains a single tiep, or more in case of co-occurring tieps. For example, if
Qtieps is equal to<A+, B+, A-, (B-, C+), C->, the reversed sequence revTieps is equal to
<C-, (B-, C+), A-, B+, A+>. The variable currPrefix represents the current TIRP-prefix
through each iteration and is used to reveal the previous TIRP-prefix. It is initialized in line
3 with the TIRP of interest.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4812 N. Itzhak et al.

The algorithm iterates through each element of revTieps, with the current element stored
in currTiep, and through each tiep in currTiep (lines 4–18). In each iteration, the algorithm
assigns the original tiep’s STI index in currPrefix to currentSTIsIndex using the function
getIndexOfCurrentSTI.

Next, if the current tiep is a starting tiep (tiep.type is ’+’), the function removeSTI removes
the current tiep’s STI from the current prefix currPrefix (line 8). Otherwise, if the current tiep
is an ending tiep (tiep.type is ’-’), the algorithm adds an asterisk to the tiep’s STI’s symbol,
indicating an unfinished STI (line 10). Moreover, the algorithm establishes the temporal
relations of the current unfinished STI with all other unfinished STIs in the current prefix,
according to the unfinished coinciding STIs challenge (Sect. 3.3). Lastly, at the end of each
iteration (line 18), the algorithm adds the currPrefix into TIRPPrefixes, which is the returned
list of TIRP-prefixes.

Given a pattern having k STIs, the runtime complexity of the TIRP-prefixes revealer
algorithm is O(k +k(k −1)) = O(k2) due to the iterations over k starting tieps and k ending
tieps, in which for each ending tiep iterates over up to k − 1 other unfinished STIs.

4.2 Generation of The TIRP-prefix’s evolving TIRPs

A TIRP-prefix containing more than one unfinished STI results in uncertain temporal rela-
tions (Sect. 3.3). As a result, all possible TIRPs that can evolve from the TIRP-prefix need
to be considered for the computations. The TIRP-prefix’s temporary disjunctions of tem-
poral relations are replaced based on the rules presented in Fig. 5 to generate all possible
combinations.
These combinations represent a set of TIRPs that can evolve from a current TIRP-prefix. For
example, given the TIRP-prefix {A∗ temporary finished-by B∗}, the three following TIRPs
can be evolved: {A overlaps B} or {A finished-by B} or {A contains B}.

A naive generation of all possible patterns that can evolve from a given TIRP-prefix
involves the enumeration of all possible temporal relations between each pair of unfinished
STIs according to the rules shown in Fig. 5. For two or more unfinished coinciding STIs
(k ≥ 2), there are (k2 − k)/2 possible temporal relations into which the unfinished STIs can
eventually evolve. Thus, the number of possible temporal relations candidates is bounded
by 3(k2−k)/2 for k unfinished coinciding STIs. The number three, which is the base of the
exponent in the upper bound, represents the number of possible temporal relations between
eachpair of unfinishedSTIs, as explained earlier and shown inFig. 5. For example, having four
unfinished coinciding STIs (k = 4), A∗, B∗, C∗, and D∗, where A∗+< B∗+< C∗+< D∗+,
results in (42 − 4)/2 = 6 pairs of the unfinished STIs. The temporal relations overlaps,
finished-by, or contains can evolve between a pair of unfinished STIs (Fig. 5.ii). Thus, a
naive generation of all the suitable temporal relations among them requires generating up to
3(42−4)/2 = 36 = 729 patterns.

However, such a naive generation may produce impossible patterns with combinations
of temporal relations that contradict each other. For example, based on Allen’s transition
table [26], once a combination of STIs includes A overlaps B and B overlaps C , the tem-
poral relation between A and C cannot be finished-by or contains, but only overlaps. Such
patterns cannot exist in reality, and detecting them is useless and time-consuming. Using
the transitivity property [26] will reduce the number of generated candidates by avoiding
impossible patterns, which we describe in detail in Appendix A to ease the reading of this
section and due to space constraints. In the example presented in the previous paragraph,

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4813

a generation using the transitivity property generates only 103 patterns instead of the 729
patterns that the naive generation produces.

4.3 TIRP-prefixes’detection

To learn a continuous TIRP’s completion prediction model (Sect. 4.4), the TIRP-prefixes’
instances have to be detected in the STIs database DB, as explained in Sect. 3. However,
since DB comprises finished STIs, TIRP-prefixes with unfinished STIs cannot be detected
in the DB. A TIRP-prefix with a single unfinished STI has no ambiguity in the temporal
relations, and its instances can be detected in the DB by assuming the single unfinished STI
is finished, which means the remaining ending tiep is followed by the TIRP-prefix’s latest
tiep. However, for a TIRP-prefix with multiple unfinished STIs, each TIRP that can evolve
from the TIRP-prefix (Sect. 4.2) should be detected separately, which will be referred to in
the detection algorithm also as TIRP-prefix.

The sequential TIRP-prefix detection algorithm (Algorithm 2) is used to detect TIRP-
prefix instances in the STIs database. The sequential TIRP-prefix detection algorithm gets
a TIRP-prefix to detect (TIRPPrefix) and lexicographically ordered STIs of an entity (e.g.,
patient), represented by entSTIs, and returns all TIRP-prefix’s instances that were detected
in this entity. The algorithm starts by detecting all instances of the TIRP-prefix’s first STI
in a given entity and expands these instances by detecting instances of further TIRP-prefix’s
STIs while verifying the instances’ temporal relations are the same as in the TIRP-prefix’s
temporal relations half matrix. Only the detected instances that maintain the TIRP-prefix’s
conjunction of pairwise temporal relations among the STIs are returned.

Algorithm 2 Sequential TIRP-Prefix Detection
Input: TIRPPrefix - a TIRP-prefix to detect; entSTIs - entity’s lexicographically ordered STIs.
Output: entTIRPPrefixsInst - detected instances of the TIRP-prefix in the entity.

1: entTIRPPrefixsInst ← []
2: for each currSTI in TIRPPrefix.STIs do
3: i ← getSTIIdx(TIRPPrefix, currSTI) � returns STI index
4: currTIRPPrefixsInst ← []
5: entSTIInst ← getEntSTIInst(entSTIs, currSTI) � returns all detected instances
6: if i == 0 then � TIRP-prefix’s first STI
7: currTIRPPrefixsInst ← entSTIInst
8: else
9: for each currEntSTI in entSTIInst do
10: for each prevEntInst in currTIRPPrefixsInst do
11: validRel ← True
12: for each prevEntInstSTI in prevEntInst do
13: j ← getSTIIdx(TIRPPrefix, prevEntInstSTI)
14: expectedRel ← getExpectedRel(TIRPPrefix, i, j)
15: actualRel ← getActualRel(prevEntInstSTI, currEntSTI)
16: if actualRel ! = expectedRel then � different temporal relations
17: validRel ← False
18: break
19: if validRel == True then � temporal relations conjunction verification
20: newInst ← prevEntInst.append(currEntSTI)
21: currTIRPPrefixsInst.append(newInst)
22: entTIRPPrefixsInst ← currTIRPPrefixsInst
23: return entTIRPPrefixsInst

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4814 N. Itzhak et al.

In Algorithm 2, the detected TIRP-prefix’s instances are represented by the variable ent-
TIRPPrefixsInst and initiated to an empty list (line 1). The algorithm starts by iterating through
the TIRP-prefix’s STIs in their lexicographical order, the variable currSTI representing the
current STI that needs to be detected (line 2). The function getSTIIdx is called to get the
currSTI’s index in the TIRP-prefix, which is assigned to a variable i (line 3). In line 4, the
variable currTIRPPrefixsInst is initiated to an empty list and is used to collect all instances
that include the TIRP-prefix’s STIs with an index equal to or less than i. In each instance
in currTIRPPrefixsInst, the temporal relations among the TIRP-prefix’s STIs are the same
as in the original TIRP-prefix. Then, in line 5, the function getEntSTIInst is used to get all
instances of the current STI detected in entSTIs. They are stored in entSTIInst.

In case the current STI is the TIRP-prefix’s first STI (i = 0), the variable currTIRP-
PrefixsInst is set to be entSTIInst (lines 6–7). Otherwise (i > 0), the temporal relations of
each of entSTIInst’s instances (represented by currEntSTI), and each currTIRPPrefixsInst’s
STIs instance, represented by prevEntInst, are compared. The temporal relation between
currEntSTI and prevEntInst has to be verified to ensure it is the same as in the TIRP-prefix’s
temporal relations conjunction (lines 8–21).

The verification is performed by comparing each currEntSTI with each prevEntInst’s STI,
which is represented by prevEntInstSTI. The result of this verification is stored in the variable
validRel, which indicates whether the temporal relations among the detected TIRP-prefix’s
STIs are the same as in the TIRP-prefix’s temporal relations conjunction. In each iteration
of the verification, the algorithm executes the following steps: (a) the function getExpect-
edRel gets a TIRPPrefix and indices of two TIRP-prefix’s STIs and returns the temporal
relation between them. This function is called to get the expected temporal relation between
currEntSTI and prevEntInstSTI, and the variable expectedRel stores its output (line 14); (b)
the function getActualRel gets two detected STIs instances and returns the temporal relation
between them, i.e., the actual temporal relation between currEntSTI and prevEntInstSTI,
stored in actualRel (line 15); (c) then, if the actualRel was always equal to the expectedRel,
the prevEntInst instance is expanded to also contain currEntSTI and added to currTIRPPre-
fixsInst (lines 16–21); (d) lastly, once the iterations over the entTIRPPrefixsInst are completed,
currTIRPPrefixsInst is assigned to entTIRPPrefixsInst to store all expanded instances that
include TIRP-prefix’s STIs with indices less than or equal to i.

All TIRP-prefixes’ instances must be detected from the training data to learn a CPM. In
contrast to the learning stage, in which the uncertainty is problematic for the computations,
in the prediction stage, the exact TIRP-prefix, even if included multiple unfinished STIs,
should be detected to provide the appropriate TIRP’s completion probability. A TIRP-prefix
can be detected directly from the entity’s data during the prediction stage since the entity’s
data contain unfinished STIs and temporary temporal relations.

Thus, the sequential TIRP-prefix detection (Alg. 2) can be used without any changes,
during the prediction stage, at any time point, by passing the TIRP-prefix and the entity’s
observed data to the algorithm. A TIRP-prefix can be passed as a TIRPPrefix, and the entity’s
observed data as entSTIs, including the temporary relations in both variables. For example,
the TIRP-prefix {A∗ temporary finished-by B∗} can be detected in an entity only if there
are unfinished STIs A∗ and B∗ and their temporary temporal relation is finished-by (i.e.,
A∗+< B∗+).

Given a TIRP-prefix Q̌ having k STIs to be detected within an entity, having n STIs,
and up to m instances that exist for each TIRP-prefix’s STI in the entity, the sequential
TIRP-prefix detection algorithm is bounded in the worst case by the following expression:
O(k∗n + k∗mk) = O

(
k(n + mk)

)
. The algorithm iterates through the k TIRP-prefix’s STIs

and goes over the n entity’s STIs to detect the current TIRP-prefix’s STI (line 5). Additionally,

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4815

Fig. 9 An example of a TIRPwith three STIs (top) and the predicted TIRP’s completion probabilities (bottom)
using the two continuous prediction models: SCPM and FCPM

in each iteration, the algorithm verifies the instances of TIRP-prefix’s STI i with the STIs
in currTIRPPrefixsInst (lines 6–21). Overall, the number of runs for the temporal relations
verification is m +1∗m2+2∗m3+· · ·+(k −1)∗mk . The constant change in the expression’s
elements represents the number of comparisons required for the TIRP-prefix’s temporal
relations in currTIRPPrefixsInst. The multiplying in m represents a case that in each iteration
on the TIRP-prefix’s STIs, the instances in currTIRPPrefixsInst were verified to ensure they
have the same temporal relations as in Q’s conjunction of temporal relations. Lastly, this
expression can be upper bounded by k ∗ mk = k(m + m2 + m3 + · · · + mk).

4.4 Continuous predictionmodels

We introduce two continuous prediction models (CPMs) to continuously estimate the proba-
bility of the TIRP’s completion based on the TIRP-prefixes. The first, more simplistic, model
is called the Segmented Continuous Prediction Model (SCPM). The predicted TIRP’s com-
pletion probability changes only at time points where tieps appear, as illustrated by a dashed
line at the bottom of Fig. 9. The second model, called the Fully Continuous Prediction Model
(FCPM), is more complex and incorporates the durations between the TIRP-prefix’s consec-
utive tieps and thus allows the estimated completion probability to change continuously, as
shown by the solid line at the bottom of Fig. 9.

4.4.1 The segmented continuous prediction model

A basic rule used to calculate the completion probability was already laid out in Sect. 3.1,
Formula 3. Recall that the probability of TIRP Q completion is Pr(Q)/Pr(ptc), where ptc
is Q’s prefix at time tc. Thanks to the TIRP-prefixes definition and their instances’ detection,
such probabilities can be computed, as explained in Sect. 4.3.

The Segmented Continuous Prediction Model (SCPM) is based on simply applying For-
mula 3, and since it was discussed in detail in Sects. 3.1 and 3.2, it will not be discussed
further.

4.4.2 The fully continuous prediction model

The Fully Continuous Prediction Model (FCPM) considers the distributions of the durations
between the TIRP-prefixes’ consecutive tieps (Fig. 10), in addition to the TIRP-prefixes’

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4816 N. Itzhak et al.

number of occurrences in the DB. The FCPM uses these distributions to estimate the TIRP’s
completion given the durations between the tieps in the TIRP-prefix ptc of Q observed at
any time point tc.

In this section, the durations between consecutive tieps of a TIRP-prefix are considered
a duration element of ptc , and its estimated distribution will be used to calculate the TIRP’s
completion probability. Let di be the duration of the TIRP-prefix’s i-th element, and g the
total number of duration elements in ptc . The SCPM’s Formulas 1, 2, and 3 are modified to
include durations as follows2:

Pr(Q | tc, d1, . . . , dg) = Pr(stc | ptc , d1, . . . , dg) (5)

= Pr(ptc , d1, . . . , dg | stc)Pr(stc)

Pr(ptc , d1, . . . , dg)
(6)

= Pr(d1, . . . , dg | ptc , stc)Pr(ptc | stc)Pr(stc)

Pr(d1, . . . , dg | ptc)Pr(ptc)
(7)

= Pr(d1, . . . , dg | Q)Pr(Q)

Pr(d1, . . . , dg | ptc)Pr(ptc)
. (8)

Formula 5 gives the TIRP Q’s completion probability Pr(Q | tc) estimated at time point
tc taking into account the durations distributions between the TIRP-prefix’s consecutive tieps.
The equality in Formula 5 results from observing Q is equivalent to observing the prefix ptc
at tc, later followed by stc .

Formula 6 follows the Bayes’ rule, and in Formula 7, the numerator results from the
conditional probability rule applied conditional on stc . The denominator in Formula 7, again
follows from the conditional probability rule. Lastly, in Formula 8, the numerator is derived
based on the conditional probability rule Pr(ptc | stc)Pr(stc) = Pr(ptc , stc), and observing
ptc followed by stc is equivalent to observing Q.

In full generality, the duration elements can be dependent on each other and follow a
complex multidimensional continuous distribution. To be able to use the duration elements
in a practical model, we make the following simplifying assumptions:

Assumption 1 The duration elements d1, . . . , dg are independent conditionally on the event
(ptc , stc), which is equivalent to Q.

Assumption 2 The duration elements d1, . . . , dg are independent conditional on the event
(ptc ,¬stc).

Intuitively, we assume the duration elements to be independent at every time point tc in
both TIRP-prefix’s instances that are ended or not ended with the complete TIRP Q. Based
on Assumptions 1 and 2, Formula 8 can be rewritten as:

Pr(Q | tc) = ψ(tc)

ψ(tc) + ψ̄(tc)
, (9)

2 Note that in the formulas we use probabilities of continuous variables. The issue will be discussed in detail
below, for now let us assume it to be a shorthand notation for probabilities of durations belonging to a narrow
interval around the current value.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4817

where

ψ(tc) = Pr(ptc , stc)

g∏

i=1

Pr(di | ptc , stc), (10)

ψ̄(tc) = Pr(ptc ,¬stc)

g∏

i=1

Pr(di | ptc ,¬stc). (11)

The numerator in Formula 9, which is defined in Formula 10, results from applying
Assumption 1 to the numerator of Formula 8: Pr(Q)Pr(d1, . . . , dg | Q), which is equivalent
to Pr(ptc , stc)Pr(d1, . . . , dg | ptc , stc). Based on Assumption 1, the multiplication law of
probability is used on Pr(d1, . . . , dg | ptc , stc) resulting in

∏g
i=1 Pr(di | ptc , stc). The

denominator in Formula 9 is obtained based onAssumption 2 by first applying the conditional
law of total probability:

Pr(d1, . . . , dg | ptc) = (12)

= Pr(d1, . . . , dg | ptc , stc)Pr(stc | ptc) + Pr(d1, . . . , dg | ptc ,¬stc)Pr(¬stc | ptc)

=
g∏

i=1

Pr(di | ptc , stc)
Pr(ptc , stc)

Pr(ptc)
+

g∏

i=1

Pr(di | ptc ,¬stc)
Pr(ptc ,¬stc)

Pr(ptc)
(13)

= 1

Pr(ptc)

[
Pr(Q)

g∏

i=1

Pr(di | ptc , stc) + Pr(ptc ,¬stc)

g∏

i=1

Pr(di | ptc ,¬stc)
]

(14)

= ψ(tc) + ψ̄(tc)

Pr(ptc)
. (15)

Formula 12 follows from the conditional law of total probability, Formula 13 from
Assumptions 1 and 2, and the definition of conditional probability. Formula 14 is obtained
by refactoring, and Formula 15 follows from Formulas 10 and 11. Finally, the denominator
in Formula 9 (ψ(tc) + ψ̄(tc)) results from multiplying the previous result by Pr(ptc) in the
denominator of Formula 8. The decomposition reduces the problem to estimating 2g single
variable distributions for each possible TIRP-prefix of Q.

For the computations, we use Formula 9 (ψ(tc)/
[
ψ(tc) + ψ̄(tc)

]
), in which ψ(tc) is

defined in Formula 10, and ψ̄(tc) is defined in Formula 11. To estimate the duration proba-
bilities involved in the TIRP-prefix, we fit a duration distribution for each duration element
between the TIRP-prefix’s consecutive tieps. This will be illustrated below.

For example, in Fig. 10, the TIRP-prefix ptc = {A overlaps B∗} contains three tieps,
which means g is equal to three. The TIRP’s completion probability estimation is based
on duration histograms and fitted distributions between the consecutive tieps of the TIRP-
prefix {A overlaps B∗}. As shown in Fig. 10.i, to calculate Formula 10, the instances of
{A overlaps B∗} that end with the complete TIRP in DB should be considered, and for
Formula 11, the instances of {A overlaps B∗} which do not end with the complete TIRP in
DB should be used, as shown in Fig. 10.ii.

Some of the TIRP-prefix’s instances that do not end with the complete TIRP might have
different consecutive tieps than the consecutive tieps of the complete TIRP. For example, in
Fig. 10, the TIRP’s earliest consecutive tieps are A+ and B+. However, the earliest TIRP-
prefix is A∗, whose instances need not necessarily satisfy the temporal relation overlaps with
STI B. For these instances, the TIRP’s consecutive tieps A+ and B+ do not exist; thus, the
duration between the consecutive tieps A+ and A- needs to be used to estimate A’s duration.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4818 N. Itzhak et al.

Fig. 10 A continuous completion prediction of TIRP Q: {A overlaps B, A before C , B before C}, considering
the durations distributions between the TIRP-prefix’s consecutive tieps of TIRP-prefix’s instances that are (i)
ended or (ii) not ended with Q in DB

Distribution Estimation Procedure We now describe the procedure used for actual distri-
bution estimation. We assume that each element’s duration follows one of the distributions
commonly used in survival analysis: exponential, Weibull, gamma, or lognormal. Addition-
ally, we include the Pareto distribution to allow heavy tails and the exponentiated Weibull
distribution to allow the steep sides and a flat bottom density (i.e., the so-called “bathtub
distribution”). The parameters of each distribution are fitted to the data using the maxi-
mum likelihood method. The final distribution is determined by constructing the histogram
of duration values and choosing the distribution with the least residual sum of squares
between its density function and the histogram. We used the distribution estimation pro-
cedures implemented in Python’s SciPy package [47] (version 1.4.1), and the number of bins
in the histogram was determined using the Freedman-Diaconis rule [48].

Probability Mass Each di is a real number representing the duration, and thus, the prob-
ability of seeing this exact duration is zero. Thus, the probability cannot be provided for a
specific value, only for a range. For notational simplicity, the event di ∈ [di − ε, di + ε]
for some constant ε > 0 will be denoted simply with di within probability statements. ε

thus represents the width of the interval around the current value of di in which we compute
the probability mass. In our implementation, we found the value of ε = 1 to be optimal, as
smaller values would introduce too much noise into the estimated probabilities.

Censoring For the duration of the last and unfinished element of ptc (i.e., dg), the probabil-
ity of it belonging to a narrow interval cannot be used in Formulas 10 and 11 since the exact
duration is not yet known. The value is censored since we only know that the given STI will
end later than tc. Since the problem is analogous to censoring in survival analysis, we adopt
a method used in this branch of statistics to handle censored data [49, Chapter 3]. Instead of
using the probability density function for dg , we will use the probability that the duration is
longer than the currently observed time (Pr(dg ≥ tc)), where the probability is computed
according to the fitted distribution. As shown in Formula 16, the probability Pr(dg ≥ tc)

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4819

Fig. 11 The horizontal dashed line indicates the prediction decision threshold (0.5 in this figure). An alert
could be raised immediately after the probability exceeds the threshold (early strategy) or when the threshold
was consistently exceeded for some pre-defined time τ (conservative strategy)

equals to the survival function 1 − C DF(tc), which is one minus the cumulative distribu-
tion function (CDF) of dg . For example, in Fig. 10, the blue-colored functions represent the
1 − C DF(tc) for the third duration element.

Pr(dg ≥ tc) = 1 − C DF(tc). (16)

When Formula 16 is used to calculate the probability of the duration of the last and
unfinished element dg , Formulas 10 and 11 are rewritten, respectively, as follows:

ψ(tc) = Pr(ptc , stc)Pr(dg ≥ tc | ptc , stc)

p−1∏

i=1

Pr(di | ptc , stc), (17)

ψ̄(tc) = Pr(ptc ,¬stc)Pr(dg ≥ tc | ptc ,¬stc)

p−1∏

i=1

Pr(di | ptc ,¬stc). (18)

4.5 Early warning strategies

Early warning strategies can be used to raise an alert once there is a high likelihood of the
completion of the TIRP, based on the CPMs’ estimated probabilities (Fig. 9). For example,
predicting a TIRP’s completion using earlywarning strategies can be used for early prediction
of a sequence of events ending with a target event by continuously predicting the completion
of a TIRP ending with that event. In medicine, the clinical team needs to be warned of
potential complications of a monitored patient in an ICU to enable early intervention, and
ideally, prevention.

We propose two strategies to predict the TIRP’s completion, as illustrated in Fig. 11.
The early strategy triggers a warning when the completion probability crosses a pre-defined
threshold.

Alternatively, the conservative strategy only issues an alert only when the probability
crosses a pre-defined threshold for at least a pre-defined amount of time, called the decision

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4820 N. Itzhak et al.

time delay (τ). For example, in Fig. 11, τ is defined as three time stamps. The early strategy
is a special case of the conservative strategy with a τ = 0.

A lower τ might give earlier decisions and increase the absolute number of the true positive
cases (TP) cases since it predicts the pattern will be unfolded once the probability crosses the
threshold, even for a short time. However, a lower τ might also increase the false-positive
(FP) cases since it can capture cases that cross the threshold by chance. In contrast, a higher
τ leads to more conservative predictions, which may result in delayed decisions and increase
the true-negative (TN) cases. However, for higher τ , the false-negative (FN) cases might
also increase since the patterns’ completion might appear before the probability crosses the
threshold for the required τ time units.

5 Evaluation

Our goal was to evaluate the effectiveness of using the continuous prediction models (CPMs)
in predicting a TIRP’s completion, which will be used in future work for predicting an event
of interest that a pattern ends with. The evaluation was performed on four real-life medical
and non-medical datasets, and three research questions were defined. Overall, the TIRP’s
completion evaluation using the CPMs was performed on over 2,000 different TIRPs.

The main research questions for this study were:

RQ1. Which CPM performs better, in terms of prediction performance and earliness, in
predicting a TIRP’s completion?

RQ2. Which value of τ performs better, in terms of prediction performance and earliness,
in predicting a TIRP’s completion?

RQ3. Which temporal abstraction method and number of symbols lead to better prediction
performance of the CPMs for a given target event using TIRP’s completion?

5.1 Datasets

We evaluated the proposedmodels using real-life datasets: the cardiac surgical patients (CSP)
dataset (Sect. 5.1.1), acute hypertensive episodes (AHE) dataset (Sect. 5.1.2), diabetes (DBT)
dataset (Sect. 5.1.3), and elderly first injury fall (EFIF) dataset (Sect. 5.1.4).

5.1.1 The cardiac surgical patients (CSP) dataset

The cardiac surgical patients (CSP) dataset [9] contains data measured every minute over the
first 12h of the ICU hospitalization of patients who underwent cardiac surgery at the Aca-
demic Medical Center in Amsterdam, the Netherlands, from 2002 to 2004. The data include:
mean arterial blood pressure (MAP), central venous pressure (CVP), heart rate (HR), body
temperature (TMP), and two ventilator variables, namely fraction inspired oxygen (FiO2)
and level of positive end-expiratory pressure (PEEP), and low-frequency time-stamped data,
including base excess (BE), cardiac index (CI), creatinine kinase MB (CKMB), and glu-
cose. For knowledge-based discretization, we created states for each temporal variable using
cutoffs that knowledge experts defined in Verduijn [50].

The target event was defined as the first occurrence of CI with values lower than 2.5 ls per
minute per square meter (L/min/m2). The patient’s files are filtered to at least 120min of
data before the target event, leaving the data to a total of 329 patients, of which 115 patients

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4821

had the target event in their records. PAA was used by dividing the time series into segments
of ten minutes.

5.1.2 The acute hypertensive episodes (AHE) dataset

The acute hypertensive episodes (AHE) data [12] were extracted from the MIMIC-III [29],
a public-access database that contains discrete patient electronic medical records (EMR)
data derived from multiple ICUs from a single center in Boston, Massachusetts, USA. We
used vital signs data, which are time series-based sampled each minute and comprised of
systolic arterial blood pressure (SABP), heart rate (HR), arterial oxygen saturation (SpO2),
and respiratory rate (RESP).

The target event was defined as the AHE target onset, which was defined as the beginning
of overlapping epoch intervals of 30min, including more than half of the data points with
SABP greater than 130 mmHg. These episodes represent elevations in blood pressure and
may result in clinical damage or indicate a change in the patient’s clinical situation, such as
elevation of intracranial pressure or kidney failure [12].

The actual 1:1 ratio between the patients who have and do not have the target event
in their records was maintained, and the patients’ similarity score was calculated by their
demographic parameters. The patient’s files are filtered to at least 12h of data for each patient,
leaving the data to a total of 2688 patients, of which 1344 patients had the target event in
their records. PAA was used by dividing the time series into segments of one hour.

5.1.3 The diabetes (DBT) dataset

The diabetes dataset [9] provided by Clalit Health Services, an Israeli health maintenance
organization, contains monthly data from 2002 to 2007 on type II diabetes patients. The
dataset contains hemoglobin-A1c (HbA1C)values, bloodglucose levels, low-density lipopro-
tein (LDL) cholesterol values, albumin values, and creatinine levels, and medications that the
patients purchased: oral hypoglycemic agents (diabetic medications), cholesterol-reducing
statins, and beta-blockers. For knowledge-based discretization, we created states for each
temporal variable using cutoffs that knowledge experts defined, in which we used the defi-
nitions described in Moskovitch and Shahar [9].

The target event was defined as the first occurrence of high HbA1C with values greater
than 9%. The patient’s files are filtered to at least 24 months of data before the target event,
leaving the data to a total of 1,710 patients, of which 239 patients had the target event in their
records.

5.1.4 The elderly first injury fall (EFIF) dataset

The elderly first injury fall (EFIF) data [45] were collected between 2017 and 2019 from
over 1769 care homes across the UK. The carers documented the data through a mobile
app and contained their assessments of the residents’ actions. The data were aggregated to
a granularity of days and contained the following temporal variables: number of drinking
actions, number of smoking actions, number of exercise actions, averaged estimated appetite
levels, averaged estimated amount of fluid drunk, averaged estimated mobility assistance,
averaged estimated happiness levels, average blood glucose levels, and number of routine
medical actions (e.g., skin integrity assessment or vital signs measurements).

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4822 N. Itzhak et al.

The target event was defined as the first occurrence of the residents’ first fall with a severe
or moderate injury. The resident’s files are filtered to residents above 75 years old that are not
bed bound and at least 6 weeks data before the target event, leaving the data to 852 residents,
of which 150 residents had the target event in their records. The residents were matched
based on their similarity score, calculated by their demographic parameters. PAA was used
by dividing the time series into segments of two weeks.

5.2 Experiments

To answer the research questions, an experiment was designed and performed. Additionally,
a preliminary analysis of the experiment was performed (Appendix E), in which the goal was
to evaluate the CPMs at the instances’ different portions over time, without using the early
warning strategies.

5.2.1 Experimental setup

The models were evaluated on the ability to predict the completion of a TIRP that ended
with a target event. The entities’ (i.e., patients) demographic data were ignored, and only the
time-based data were used for the prediction.

Data-driven temporal abstraction methods (Sect. 2.1) were used, including SAX, EWD,
and EFD, with two, three, and four symbols per variable. For gradient abstraction (GRAD),
three symbolswere used to represent thefirst derivative’s sign: increasing, stable or decreasing
symbols. The first derivative was calculated based on an overlapping time window of 60min
for the CSP dataset, 4h for the AHE dataset, 5 months for the DBT dataset, and 2 months for
the EFIF dataset. As specified in Appendix B, the knowledge-based (KB) abstraction was
performed using cutoffs that a domain expert defined for the CSP, AHE, and DBT datasets.
The STIs were concatenated into a unified STI when the gap among two STIs having the
same symbol was shorter than 10min for the CSP dataset, 1h for the AHE dataset, 1 month
for the DBT dataset, and 2 weeks for the EFIF dataset, and there were no other STIs between
them from the same variable.

Each pattern that ended with the target event was used separately to learn a model for
its completion. Then, the training set detected TIRP-prefixes instances were used to learn
the CPM model and were evaluated on continuously predicting the completion of the TIRP-
prefixes instances that were detected in the testing set. The patterns were discovered from
the STI data using the KarmaLego algorithm [27] with Allen’s seven temporal relations. The
patterns were discovered in the data with a minimum vertical support threshold (Sect. 2.3) of
30% out of the entities (i.e., patients) that contained the target event. Out of all the discovered
patterns, those that ended with the target event were used. The target events’ STIs were
considered as instantaneous events, in which the beginning of the target event was considered
as the completion of the TIRP. Once the patterns were discovered, all entities, with or without
the target event, were used for learning and evaluating the model.

A TIRP and its TIRP-prefixes can be detected more than once in an entity’s records, in
which each detected instance of the TIRP or its TIRP-prefixes were considered and evaluated
separately. Overall, all instances that started with the TIRP’s earliest tiep, or more in the case
of co-occurring tieps, were used in the experiments. Since each TIRP’s completion was
based on a different number of detected TIRP-prefixes’ instances that ended or not ended
with the TIRP, the imbalanced ratio differed between the patterns (see Appendix C). We ran
the experiments with ten-fold cross-validation, using target stratification. The instances of

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4823

a TIRP and its TIRP-prefixes of the same entity (e.g., patient) appeared exclusively in the
same fold. As we explain in the description of the experiment (Sect. 5.2.2), the instances were
evaluated at each time stamp as long as the model did not make a decision or until the end of
the entity’s data. Lastly, once the final decisions for the TIRP’s completion were collected,
we evaluated the models compared to the actual labels.
Baseline models In addition to the SCPM and FCPM, other models consisting of binary
classifierswere evaluated, inwhich the durations between the consecutive TIRP-prefix’s tieps
were used as features. For that, random forest (RF) [51], artificial neural network (ANN) [52],
and recurrent neural network (RNN) [53] classifiers were used.

Records for the classifier were created to represent the evolution of a TIRP over time. Each
input record for the classifier represented a TIRP-prefix instance at a specific time stamp, in
which multiple records were used to consider all the time stamps for each evolving TIRP-
prefix instance. The TIRP-prefix instance’s time durations between the consecutive tieps
at a specific time stamp were used as features. Each instance’s record target was whether
the instance was finally unfolded to a TIRP’s completion or not. For example, in Fig. 10,
the presented instance of TIRP-prefix {A overlaps B∗} is represented by the time duration
elements d1, d2, and d3. The TIRP’s duration elements that were not observed until time
point tc are represented by zero. In Fig. 10, the presented TIRP-prefix’s instance at time
point tc is an example of an instance that ended with the entire TIRP. The order between the
time durations elements between the consecutive TIRP-prefix’s tieps was considered for the
recurrent neural network. More details on the settings of the baseline models are described
in Appendix D.

Note that our evaluation aims to assess the effectiveness of using the CPMs in predicting
the completion of a TIRP’s instance. As event prediction was not the focus of this evaluation
(but future use of this capability), no state-of-the-art sequential deep learning models were
used as baseline models to be learned from the raw data for predicting the event.

5.2.2 Continuous TIRP’s completion prediction

The experiment’s goal was to evaluate the ability to make decisions over time regarding
whether a TIRP will be unfolded to its completion using the CPMs (Sect. 4.4) and the early
warning strategies (Sect. 4.5). A TIRP-prefix’s instance was evaluated at each time stamp as
long as the model does not make a decision on whether the TIRP will be unfolded or until the
end of the entity’s data. In case of the entity’s data were over, the decision was determined
as the TIRP will not be unfolded.

The CSP, AHE, and DBT datasets were abstracted with eleven combinations of temporal
abstraction methods (KB, GRAD, EWD, EFD, and SAX) and the number of symbols (2, 3,
4, and KB), in which the TIRPs were discovered for each combination. The EFIF dataset was
not abstracted using KB and resulted in ten combinations of temporal abstraction methods
(GRAD, EWD, EFD, and SAX) and the number of symbols (2, 3, and 4). All five continuous
predictionmodels (SCPM,FCPM,RF,ANN, andRNN)were evaluated on theTIRP-prefixes’
detected instances. The decisions were made based on a prediction decision threshold and
the τ , in which the metrics (Sect. 5.3) were computed based on the threshold’s different
configurations.

The prediction decision threshold was used with values between 0 to 1 with an increment
of 0.1, and the τ was varied using 0, 1, 2, and 3 time units.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4824 N. Itzhak et al.

Fig. 12 FCPMperformedwith much better AUROC andAUPRC than the baseline models for all datasets. Out
of all baselinemodels,ANNperformedwith betterAUROCandAUPRC. In contrast, theAUPRCperformances
of SCPM were lower than other models

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4825

5.3 Evaluationmetrics

To evaluate the CPMs’ performance, a receiver operating characteristics (ROC) curve was
calculated and the corresponding area under the curve (AUROC). However, since the imbal-
anced ratio differed between the patterns, we also used a precision-recall (PR) curve and
computed the area under the PR curve (AUPRC), in which the PR curve gives a more infor-
mative picture of an algorithm’s performance for highly skewed data [54]. In contrast to the
AUROC, in which a random classifier gets a score of 0.5, the AUPRC of a random estimator
calculates as the number of minority class examples divided by the total number of examples
[54, 55]. In this study, the prediction decision thresholds described in Sect. 4.5 varied from 0
to 1 to create the ROC and PR curves.

In the following section (Sect. 6), the mean AUROC and AUPRC results of the CPMs
include confidence intervals of 95%.

6 Results

The results are based on 2,392 10-fold cross-validation runs on 1,094 TIRPs for the CSP
dataset, 158 TIRPs for the AHE dataset, 766 TIRPs for the DBT dataset, and 374 TIRPs for
the EFIF dataset.

To answer the research question RQ1, regarding which CPM performs better for a TIRP’s
completion, we tested the overall performance of the five models: SCPM, FCPM, RF, ANN,
and RNN while using the early warning strategies. Figure12 presents the mean AUROC
and AUPRC results for CPMs, averaging the results of the different patterns. Each point
on the graph represents the mean performance results of the CPM in predicting the TIRPs’
completions with different values of τ .

Figure12 shows that RF and ANN performed similarly in terms of AUPRC. However,
ANN was better in terms of AUROC. In addition, in terms of AUPRC, SCPM performed
worst for all datasets, and RNN was the second-worst model. FCPM performed with better
AUROC and AUPRC than the baseline models for all datasets. Out of all baseline models,
ANN performed with better AUROC and AUPRC.

To answer the research questionRQ2 regarding the best value of τ for aTIRP’s completion,
we evaluated the performances of the CPMs while using the τ parameter with 0, 1, 2, or 3
time units. Figure13 presents the mean AUROC and AUPRC results for each CPM and τ .
Each point on the graph represents the mean performance results of the CPM in predicting
the TIRPs’ completions.

Figure13 shows that the τ of two time units performed best in terms of AUROC for
all CPMs in the CSP, AHE, and EFIF datasets. For the DBT dataset, a lower τ performed
better in AUROC for most of the CPMs. In terms of AUPRC, the different time delays
overall performed similarly. FCPM performed better than other baseline models for each
τ . In addition, the AUPRC performances of SCPM were lower than other models. In terms
of AUROC, ANN performed better than the other baseline models, and RNN and SCPM
performed the worst.

To answer the research question RQ1, regarding how early each CPM can predict a TIRP’s
completion, we evaluated the performances of the CPMs while using the τ parameter with
0, 1, 2, or 3 time units. Figure14 presents the instances’ revealed time portions for the
TIRP’s completion, in which only the true positive cases (i.e., when the TIRP’s completions

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4826 N. Itzhak et al.

Fig. 13 In terms of AUPRC, the different time delays overall performed similarly, and FCPMperformed better
than other baseline models for each τ . In addition, the AUPRC performances of SCPM were lower than other
models

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4827

Fig. 14 For TIRP’s completions’ correctly predicted cases, the CPMs provided earlier predictions when the
τ was lower. In addition, RNN provided the earliest predictions, and FCPM provided the latest predictions

were correctly predicted) were considered for each τ result. Each point in the results’ graphs
represents the average result for the patterns while varying the prediction decision thresholds.

Figure14 shows that when the TIRP’s completions were correctly predicted, the models
provided earlier predictions when the τ was lower, as expected. For the true positive cases
using the CSP, AHE, and EFIF datasets, RNN provided the earliest predictions, while in the
first two datasets, FCPMprovided the latest predictions. For theDBTdataset, RF provided the
earliest predictions while SCPM provided the latest predictions. However, there is a trade-off
between the prediction performance and the earliness prediction of the TIRP’s completion
(Fig. 15).

To analyze the trade-off between the prediction performance and how early each CPM
can predict a TIRP’s completion, we evaluated the performance of the CPMs while using
the τ parameter with 0, 1, 2, or 3 time units. Figure15 presents the instances’ revealed time
portions for the TIRP’s completion.

Each point in the results’ graphs represents the average result for the patterns for each
CPM and τ , in which the revealed time portions were resulted by varying the prediction
decision thresholds for each τ for the true positive cases.

Figure15 shows that using the CSP, AHE, and EFIF datasets, RNN provided the earliest
predictions.However, its prediction performanceswere relatively poor.Also, FCPMprovided
the latest but most accurate predictions. In all datasets, there is a trade-off between the
prediction performance and their earliness, inwhichmore accurateCPMs also needmore time
for making the decisions. These results strengthen the results presented in the preliminary
analysis (Appendix E.2), in which, as long as time goes by for each instance, the CPMs
provided more accurate predictions.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4828 N. Itzhak et al.

Fig. 15 There is a trade-off between the prediction performance and their earliness, in which more accurate
CPMs also need more time for making the decisions

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4829

Fig. 16 There is no significantly better temporal abstraction method and a number of symbols for the task of
TIRP’s completion

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4830 N. Itzhak et al.

To answer research question RQ3, we evaluated the performances of FCPMwhile predict-
ing TIRPs’ completions of patterns that were discovered from data abstracted using different
temporal abstractions methods and the numbers of symbols. The tested temporal abstraction
methods were: KB, GRAD, EFD, EWD, and SAX, and the numbers of symbols per vari-
able were: two, three, four, and a varied number of symbols for KB. Note that GRAD was
evaluated with only three symbols. Figure16 presents the number of patterns per temporal
abstraction method and the number of symbols. The mean AUROC and AUPRC for each
tested combination of temporal abstraction method and number of symbols included the
different patterns with values of τ .

Figure16 shows that CSP and DBT datasets that were abstracted with EWD resulted in
more patterns that end with the target event, while EFD and SAX resulted in more patterns
in the AHE dataset. Also, it can be shown that abstracting the datasets with two symbols
per variable resulted in more patterns that end with the target event. The FCPM performed
worst with GRAD in the CSP, DBT, and EFIF datasets in terms of AUPRC. In terms of
AUROC, KB performed best for the CSP dataset and EWD best for EWD. Also, SAX and
KB performed best for the AHE dataset. In the AHE and EFIF datasets, EWD and GRAD
performed worst. Overall, there is no significantly better temporal abstraction method and a
number of symbols for the task of TIRP’s completion.

In summary, FCPM performed with better AUROC and AUPRC than the baseline models
for all datasets. Out of all baselinemodels, ANNperformedwith better AUROC andAUPRC.
In contrast, the AUPRC performances of SCPM were lower than other models. In addition,
in terms of AUPRC, the different time delays overall performed similarly, and FCPM per-
formed better than other baseline models for each τ . In addition, the AUPRC performances
of SCPMwere lower than other models. In terms of AUROC, ANN performed better than the
other baseline models, and RNN and SCPM performed the worst. For TIRP’s completions’
correctly predicted cases, the CPMs provided earlier predictions when the τ was lower. In
addition, RNN provided the earliest predictions, and FCPM provided the latest predictions.
However, there is a trade-off between the prediction performance and their earliness, in which
more accurate CPMs also need more time for making the decisions.

7 Discussion and conclusions

This paper studied the continuous prediction of a TIRP’s completion for the first time. Con-
tinuously predicting a TIRP’s completion, based on partial information, can be beneficial in
real-life data in multiple domains and applications, such as predictive process monitoring
[14–16] or when a temporal pattern ends with an event of interest, such as the recovery
of a patient, or an undesirable clinical event, such as death or a medical complication. For
example, an acute blood pressure elevation [12], is used in this study, in which the data
were extracted from a real ICU database. Moreover, this method can be useful and effective
in heterogeneous multivariate temporal data, in which many methods fail to incorporate all
types of temporal variables due to their heterogeneous sampling forms. As we demonstrate
in this study, temporal abstraction transforms the various variables into STIs representation,
enabling applying the TIRP’s completion to predict whether target events will occur in the
data, based on known patterns ending with them.

In this study, the continuous TIRP’s completion methodology was evaluated on TIRPs,
ending with a target event of interest. However, the main challenge in performing such a
prediction lies in the unfinished coinciding STIs (Sect. 3.3), which do not allow determining

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4831

the “transition probability” among the TIRP’s evolution process and introduce an uncertainty
in the evolving temporal relations. For that, we introduced the TIRP-prefixes representation
to overcome those challenges.

We proposed two continuous prediction models (CPMs) for a TIRP’s completion, in
which the SCPM ignored the time duration between the tieps. The FCPM, unlike the SCPM,
incorporates the time duration between the TIRP-prefix’s consecutive tieps and thus allows
dynamic change in the TIRP’s completion estimation, even during the occurrence of the STIs.
Each CPM is based on a single TIRP since the study aims to learn the TIRP’s completion
prediction problem and tackle fundamental challenges in this domain problem. Finally, the
method includes earlywarning strategies defined by a threshold and a parameter τ that enables
conservative decision making.

A rigorous evaluation of four real-life datasets was performed. The FCPMperformed with
better AUROC and AUPRC than the SCPM and the baseline models for all datasets. While
evaluating the CPMs’ ability to make decisions over time, using the early warning strategies,
the FCPM was significantly better than the baseline models, with an average AUROC gap of
2% and an AUPRC gap of 8% (Fig. 12). Out of all baseline models, the ANN performed with
better AUROC and AUPRC. In contrast, the AUPRC performances of the SCPMwere lower
than other models. However, while analyzing the CPMs at the instances’ different portions
over time (Appendix E), the AUPRC of the SCPM performed worse at making relatively
early decisions but improved drastically as time progressed.

Additionally, in terms of AUPRC, the different time delays overall performed similarly,
and the FCPM performed better than the SCPM and the other baseline models for each τ .
For TIRP’s completions’ correctly predicted cases, the CPMs provided earlier predictions
when the τ was lower. However, there is a trade-off between the prediction performance and
their earliness, in which more accurate CPMs also need more time, and observations through
the time, for making a better estimation. This trade-off results since new data are revealed
over time (i.e., the TIRP-prefix’s tieps and the duration between them), which increases the
CPM’s prediction performance.

To summarize, this paper presents a new method for predicting the completion of TIRPs
in real-world data, utilizing two CPMs—the SCPM and the FCPM. The FCPM consistently
outperformed the SCPMand baselinemodels across all datasets. However, there is a trade-off
between earliness and accuracy since the starting and ending times of newTIRPs are gradually
revealed over time. This proposed method has potential applications in domains such as
healthcare and predictive process monitoring. Additionally, our experiments demonstrated
that the average prediction accuracy for TIRP completion is around 65% AUROC and 35%
AUPRC, but this can be further improved by using multiple patterns simultaneously or
prioritizing more predictive patterns.

One of the limitations of our study was that each TIRP was evaluated separately and, as
a result, included different instances, which makes the evaluation more difficult since the
imbalanced ratio was different (Appendix C). In addition, evaluating the TIRP’s completion
earliness included only the true positive (TP) cases (i.e., predicted that the TIRP will be
unfolded to completion and corrected), inwhich the number ofTP caseswas different between
the CPMs and for the different values of decision thresholds.

In the future, we intend to expand the proposedmethods to continuously consider multiple
frequent TIRPs, which can be used for continuous prediction of real-life tasks such as event
prediction of common complications in critically ill patients [12, 18] or recovery events. A
model based on multiple TIRPs, ending with the same target event, is expected to be more
generalizing and accurate in predicting the target event. However, the process of discovering
frequent TIRPs for TIRPs’ completion can result in many unpredictive patterns, which we

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4832 N. Itzhak et al.

would like to investigate in our future work further. In addition, we intend to consider the
continuous change of the statistical properties of the time durations’ distributions by using
incremental learning, in which new input data will be used continuously to update the existing
model’s knowledge.

To sum up, this study proposed a method for continuously predicting the completion of
TIRPs, which has potential uses in various domains and applications. The ability to predict
target events based on known patterns can be particularly useful in domains such as healthcare
and predictive process monitoring. The proposed method is effective in handling heteroge-
neous multivariate temporal data and includes early warning strategies, enabling supportive
decision making. Applying this method to multiple TIRPs simultaneously has the potential
to improve outcomes for patients and increase efficiency in various industries.

Acknowledgements Nevo Itzhak was funded by the Kreitman School of Advanced Graduate Studies and the
Israeli Ministry of Science and Technology Jabotinsky scholarship grant #3-16643.

Author Contributions N.I., S.J., and R.M. designed research. N.I. and R.M. performed research. N.I. analyzed
data. N.I., S.J., and R.M. wrote the paper.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Appendix A Efficient TIRP’s candidates generator

We introduce an efficient TIRP’s candidates generator (Algorithm 3), which exploits the
transitivity property to generate all possible TIRPs that can evolve from a given TIRP-prefix
with multiple unfinished STIs. The algorithm works by iterating over all possible temporal
relations between each pair of adjacent unfinished STIs, according to the lexicographical
order, and inferring temporal relations between the remaining unfinished STI pairs using
Allen’s transition Table [26]. The relevant temporal relations that can eventually evolve
given unfinished STIs A∗, B∗ and C∗ are presented in Table 1. Given the temporal relation
that eventually evolved between STIs A and B, r(A,B), and the temporal relation between
STIs B and C , r(B,C), can be used to infer the optional temporal relations between STIs A
and C , r(A,C).

Algorithm 3 takes a TIRP-prefix as inputs and stores the set of possible TIRPs that can
evolve from it in the variable fnlTIRPCnddts. The given TIRP-prefix might include both
finished STIs (ˆI S f) or unfinished STIs (ˆI S∗). Only the temporal relations among pairs of

Table 1 The Allen’s transition table that is relevant for the unfinished coinciding STIs challenge

r(A,B) \ r(B,C) Overlaps (o) Finished-by (fi) Contains (c) Equals (=) Starts (s)

Overlaps (o) o o o, fi, c o o

Finished-by (fi) o fi c fi o

Contains (c) o, fi, c c c c o, fi, c

Equals (=) o fi c = s

Starts (s) o o o, fi, c s s

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4833

Fig. 17 A TIRP-prefix including unfinished STIs A∗, B∗, C∗, and D∗, where A∗+ < B∗+ < C∗+ < D∗+
and all possible TIRPs that it can evolve into, presented in two ways: (i) TIRP-prefix schematic and (ii)
TIRP-prefix half matrix representation

unfinished STIs are unknown and need to be determined. First, fnlTIRPCnddts is initialized
to the empty set (line 1), and a variable unfSTIsLen is set to the number of unfinished
STIs in the TIRP-prefix (line 2). Then, the function initGenAdjacentUnfSTIs enumerates all
possible temporal relations between all pairs of adjacent (according to the lexicographical
order) unfinished STIs of the TIRP-prefix. Thus, for ǩ unfinished STIs, the function outputs

3ǩ−1 possible candidates, stored in the variable initTIRPCanddts (line 3). In lines 4–6, the
algorithm iterates over initTIRPCanddts. Each candidate c is expanded using the function
expandTIRPCand (Algorithm 4), which returns all TIRP candidates derived from c using
Allen’s transition table (line 5). They are added to fnlTIRPCnddts, which is finally returned
by the algorithm.

Algorithm 3 Efficient TIRP’s Candidates Generator
Input: TIRPPrefix - a TIRP-prefix.
Output: fnlTIRPCnddts - set of TIRPs that can evolve from the TIRP-prefix.

1: fnlTIRPCnddts ← ∅
2: unfSTIsLen ← length(TIRPPrefix. ˆI S∗) � number of unfinished STIs
3: initTIRPCanddts ← initGenAdjacentUnfSTIs(TIRPPrefix. ˆI S∗) � get candidates
4: for each c in initTIRPCanddts do
5: extTIRPCand = expandTIRPCand(c, unfSTIsLen, adjJump=2, i=0)
6: fnlTIRPCnddts = fnlTIRPCnddts ∪ extTIRPCand
7: return fnlTIRPCnddts

The function expandTIRPCand takes a parameter adjJumpwhich specifies the “adjacency
jump,” i.e., the distance between the analyzed adjacent unfinished STIs. For example, in
Fig. 17, given the temporal relations between the adjacent unfinished STIs: A overlaps B, B
overlaps C , and C overlaps D, and while considering the second-adjacent unfinished STIs
(adjJump=2), r(A, C) is must be overlaps based on r(A, B) and r(B, C). Similarly, r(B, D)

must be overlaps based on the r(B, C) and r(C, D). Then, the recursive procedure proceeds
by inferring all the temporal relations among c’s adjJump+1 adjacent unfinished STIs. For
example, while considering the third-adjacent unfinished STIs in Fig. 17, r(A, D) can be
inferred from r(A, B) and r(B, D).

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4834 N. Itzhak et al.

Algorithm 4 presents the recursive expandTIRPCand function. The function takes as
arguments the current TIRP candidate to expand (c), the number of TIRP-prefix’s unfinished
STIs (unfSTIsLen), the adjacency jump between unfinished STIs (adjJump), and an index i
of the earliest unfinished STI to consider. The function returns a set of c’s expanded TIRPs
candidates. In lines 2–3, a function getRel is called, which returns the temporal relation
between two given unfinished STIs. Note that the temporal relation between the i-th and
i + 1-th unfinished STIs (stored in fstRel) is known since it was determined during the
enumeration step of Algorithm 3. Also, the temporal relation between the i + 1-th and
i+adjJump-th unfinished STIs (stored in scdRel) is known since it has been determined
earlier in the recursive procedure. Based on fstRel and scdRel, the temporal relations among
the i-th and i+adjJump-th unfinished STIs are inferred using Allen’s transition table and
stored in inferredRels (line 4).

Algorithm 4 Expand TIRP’s Candidates (expandTIRPCand function)
Input: c - TIRP candidate to expand; unfSTIsLen - number of TIRP-prefix’s unfinished STIs; adjJump - the
adjacency’s jump among the unfinished STIs; i - index of the earliest unfinished STI.
Output: fnlCands - set of expanded TIRPs candidates.

1: fnlCands ← ∅
2: fstRel = getRel(c, i, i+1) � get temporal relation between two given unfinished STIs
3: scdRel = getRel(c, i+1, i+adjJump)
4: inferredRels = transitionTable(fstRel, scdRel) � get only possible temporal relations
5: for each rel in inferredRels do
6: extC = updateRel(c, i, i+adjJump, rel)
7: if i+1 < unfSTIsLen–adjJump then � more relations to infer
8: fnlCands.union(expandTIRPCand(extC, unfSTIsLen, adjJump, i+1))
9: else if adjJump+1 < unfSTIsLen then � more relations to infer
10: fnlCands.union(expandTIRPCand(extC, unfSTIsLen, adjJump+1, i))
11: else
12: fnlCands.union(extC)
13: return fnlCands

Then, the algorithm iterates over the inferredRels (lines 5–12) with the current relation
stored in the variable rel, and in each iteration executes the following steps: (a) updates c’s
temporal relation between the i-th and i+adjJump-th unfinished STIs, which is stored in extC
(line 6); (b) if there are more relations between adjJump-adjacent STIs to infer, calls itself
recursively with extC and i+1 adding the result to fnlCnds (lines 7–8); (c) otherwise, if there
are more relations between adjJump+1-adjacent STIs to infer, calls itself recursively with
extC and adjJump+1 adding the result to fnlCnds (lines 9–10); (d) otherwise, adds extC to
fnlCnds (lines 11–12). Lastly, fnlCands is returned.

Given a TIRP-prefix with STI series I S of size k, in which there are ǩ unfinished STIs,
the overall time complexity of creating the TIRP’s candidates, using Algorithms 3 and 4,

is bounded in the worst case by the following expression: O(3(ǩ2−ǩ)/2). The base of the
exponent in the upper bound (i.e., three) represents the number of possible temporal relations
between each pair of unfinished STIs. The formula (ǩ2 − ǩ)/2 follows from the binomial

coefficient
(ǩ
2

) = ǩ(ǩ − 1)/2 = (ǩ2 − ǩ)/2, where two stands for pairs of temporal relations

and ǩ is the number of unfinished STIs. However, this worst-case, upper-bound complexity
expression is far from the practical situation for the algorithms. The reduction is achieved

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4835

by using the transitivity of temporal relations. The overall number of generated candidates
is smaller than the naive generation, which does not exploit the transitivity property.

Appendix B Cutoffs used for the knowledge-based abstraction

The knowledge-based abstraction was performed using cutoffs defined by a domain expert,
in which the states for each dataset were as follows:

• CSP dataset:

– MAP [mmHg]: ≤60, (60,90], >90
– CVP [mmHg]: ≤5, (5,17], >17
– FiO2 [%]: ≤41, (41,60], >60
– HR [bpm]: ≤60, (60,110], >110
– PEEP [cmH2O]: ≤10, >10
– TMP [◦C]: ≤35, (35,38.5], >38.5
– BE [mEq/L]: ≤-6, (-6,-3], >-3)
– CI: [L/min/m2] ≤2.5, >2.5
– Glucose [mmol/L]: ≤2.5, (2.5,10] >10
– CKMB [%]: ≤25, (25,50], >50

• AHE dataset:

– HR [bpm]: ≤50, (50, 100], >100
– RESP [breath/min]: ≤7, (7,20], >20
– SpO2 [%]: ≤88, (88,100], >100
– SABP [mmHg]: ≤90, (90,140], >140

• DBT dataset:

– Blood Glucose [mg/dL]: ≤100, (100,125], (126,200], >200
– HbA1C [%]: ≤7, (7,9], (9,10.5], >10.5
– LDL Cholesterol [mg/dL]: ≤100, (100,130], (130,160], >160
– Creatinine [mg/dL]: ≤1, (1,1.5], (1.5,2.5], (2.5,4], >4
– Albumin [g/dL]: ≤3.5, >3.5

The cutoffs for the EFIF dataset were not applicable.

Appendix C imbalance ratio

The TIRPs’ instances imbalance ratio was defined as the number of instances of a complete
TIRP divided by the total number of instances. Figure18 presents the number of TIRPs’
instances imbalance ratio and the performance prediction while using the early warning
strategies for each TIRPs’ instances imbalance ratio and values of τ . As can be shown in
Fig. 18, the imbalance ratio was lower than 0.3 for most of the TIRPs. Overall, there was
a positive correlation between the AUPRC performances and the imbalance ratio for all
datasets. In contrast, there was no significant correlation between the imbalance ratio and the
AUROC.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4836 N. Itzhak et al.

Fig. 18 The imbalance ratio was lower than 0.3 for most of the TIRPs, and there was a positive correlation
between the AUPRC performances and the imbalance ratio for all datasets

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4837

Appendix D Parameters of baselinemodels

The parameters of each model are selected after testing the performance of each combination
(not in a greedy comparison approach), and here we describe the parameters that performed
best.

Random forest (RF) [51] classifier utilizes an ensemble learning approach, a technique
that combines the decisions from multiple models. We used 100 trees in the forest for the RF
model and amaximum depth of 3 for a tree, in which the combinations of 30, 50, 100, and 200
trees in the forest and depths of 2, 3, 5, or 10 were tested. Bootstrap was used when building
trees and out-of-bag samples to estimate the generalization accuracy. RF was implemented
with Python 3.6 Scikit-Learn (https://scikit-learn.org) version 0.22.1.

The artificial neural network (ANN) [52] is comprised of neuron layers, which contain
an input layer, hidden layers, and an output layer. In this paper, the fully connected ANN
architecture was used, in which all neurons in one layer are connected to all neurons in the
next layer. We used ANN with two hidden layers with 50 neurons for each hidden layer and
with the activation function ReLU [56].We trained all models using a maximum epoch of 20,
a batch size of 16, and a learning rate of 0.001 with gradually decreasing. A validation set was
used to measure the generalization error by randomly taking 20 percent of all training data.
We used early stopping on the validation set, in which lower than a change of 0.001 was not
considered an improvement for the loss. For ANN, combinations of one, two, three, or five
hidden layers with 20, 50, or 100 neurons and batch sizes of 16, 32, or 64 were tested. ANN
was implemented with Python 3.6 Scikit-Learn (https://scikit-learn.org) version 0.22.1.

The sequential deep learning recurrent neural network (RNN) [53] is designed to learn
the data dependencies in a sequence. We used RNN with five hidden units per layer and a
recurrent dropout of 0.2 and an activation function, ReLU [56]. We trained all models using
a maximum epoch of 20, a batch size of 16, and a learning rate of 0.001 with a gradually
decreasing. A validation set was used to measure the generalization error by randomly taking
20 percent of all training data. We used early stopping on the validation set, in which lower
than a change of 0.001 for more than two epochs was not considered an improvement for
the loss. For RNN, combinations of one, two, three, or five hidden units per layer, dropout
of 0.2, 0.3, or 0.5, with batch sizes of 16, 32, or 64 were tested. RNN was implemented with
Keras (https://keras.io) version 2.2.5.

For parameters we did not specify, we used the default.

Appendix E Preliminary analysis

E.1 TIRP’s completion prediction relative to the end

This analysis’s goal was to evaluate the prediction of a TIRP’s completion at the instances’
different portions over time using the CPMs (Sect. 5.2.1). The TIRP-prefixes’ instances were
evaluated at each time stamp until the end of the entity’s data (i.e., patient), in which the
decisions for the TIRP’s completion were determined at different instances’ revealed time
portions. Then, the metrics (Sect. 5.3) were computed for all instances for each revealed time
portion. The setup for this analysis was the same as described in Sect. 5.2.1. This preliminary
analysis was excluded from the Evaluation and Results (Sects. 5–6) since it examines the
TIRP’s completion prediction in retrospect, in which the instances’ different portions of
decision points over time were selected based on the end of the entity’s data.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

https://scikit-learn.org
https://scikit-learn.org
https://keras.io

4838 N. Itzhak et al.

The CSP, AHE, and DBT datasets were abstracted with eleven combinations of temporal
abstraction methods (KB, GRAD, EWD, EFD, and SAX) and the number of symbols (2, 3,
4, and KB), in which the TIRPs were discovered for each combination. The EFIF dataset was
not abstracted using KB and resulted in ten combinations of temporal abstraction methods
(GRAD, EWD, EFD, and SAX) and the number of symbols (2, 3, and 4). All five continuous
predictionmodels (SCPM,FCPM,RF,ANN, andRNN)were evaluated on theTIRP-prefixes’
detected instances.

E.2 Analysis results

The results are based on 2,392 10-fold cross-validation runs on 1,094 TIRPs for the CSP
dataset, 158 TIRPs for the AHE dataset, 766 TIRPs for the DBT dataset, and 374 TIRPs for
the EFIF dataset.

We first evaluated the overall performance of the five continuous prediction models:
SCPM, FCPM, RF, ANN, and RNN on predicting a TIRP’s completion at the instances’
revealed portions of time. Figure19 presents the mean AUROC, and AUPRC results over the
instances’ revealed portions of time, in which each point on the graph represents the mean
performance results for the different TIRPs.

As expected, it can be seen from Fig. 19 that as long as time goes by for each instance,
the continuous prediction models provided more accurate predictions, resulting in better
AUROC and AUPRC performance over time. In all datasets, the FCPM performed best and
the SCPM worst in terms of AUROC. However, in terms of AUPRC, the SCPM performed
worst at making relatively early decisions regarding the instances of TIRP’s completion and
drastically improved as long as time goes. As a result, the SCPM performed with better
AUPRC than the other baselines in all datasets at making a relatively late decision regarding
the instances TIRP’s completion. Also, for the DBT and EFIF datasets, even though the
FCPM performed with better AUPRC than other baseline models at making relatively early
decisions, SCPM performed better at making relatively late decisions. Overall, the FCPM
performed better than the baseline models in terms of AUROC and AUPRC. The AUPRC
performance of the SCPM was poor at making relatively early decisions but was improved
drastically as long as time went by. As a result, the AUPRC performances of FCPM and
SCPM were close at making relatively late decisions regarding a TIRP’s completion.

The following results in this analysis are only involved in the FCPM results as we demon-
strated its superiority.

Next, we evaluated the TIRP’s completion at the instances’ revealed portions of time
by the FCPM for each temporal abstraction method (KB, GRAD, EWD, EFD, and SAX).
Figure20 presents the number of TIRPs per temporal abstraction method and the mean
AUROC and AUPRC results over the instances’ revealed portions of time. Each point on the
chart represents the mean performance results of the FCPM in providing the completions
predictions for the different TIRPs.

Figure20 shows that the CSP, DBT, and EFIF datasets abstracted with EWD resulted in
more TIRPs that end with the target event than other temporal abstraction methods. However,
the AHE dataset that was abstracted with EFD resulted in more TIRPs that end with the target
event.As can be seen fromall datasets, theCPMsprovided less accurate predictions for TIRPs
discovered using GRAD. The prediction performances of EFD and SAX were quite similar,
but SAX performed slightly better. Looking at the overall mean results, FCPMprovidedmore
accurate predictions for TIRPs discovered using KB and EWD. However, EWD performed
much better than KB for the DBT dataset.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4839

Fig. 19 The FCPM performed better than the baseline models in terms of AUROC and AUPRC. The AUPRC
performance of the SCPM was poor at making relatively early decisions but was improved drastically as long
as time went by. As a result, the AUPRC performances of FCPM and SCPM were close at making relatively
late decisions regarding a TIRP’s completion

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4840 N. Itzhak et al.

Fig. 20 FCPM provided less accurate predictions for TIRPs discovered using GRAD and more accurate
predictions for TIRPs discovered using KB and EWD

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4841

Fig. 21 CPMs provided more accurate predictions over time for TIRPs discovered using two symbols per
variable or KB than three and four symbols per variable

We also evaluated the TIRP’s completion at the instances’ revealed portions of time
provided by the FCPM for each number of symbols (two, three, four, and a varied number
of symbols for KB). Figure21 presents the number of TIRPs per number of symbols and the
mean AUROC and AUPRC results over the instances’ revealed portions of time. Each point

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4842 N. Itzhak et al.

Fig. 22 FCPM performed slightly better over time for TIRPs discovered using EWD with two symbols per
variable. In contrast, FCPM performed poorly over time for TIRPs discovered using EWD with four symbols
per variable

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4843

on the graph represents the mean performance of the FCPM at a instances’ revealed portion
of time, averaging the results of the different TIRPs.

Figure21 shows that CPMs provided more accurate predictions over time, in terms of
AUROC, for TIRPs discovered using two symbols per variable or KB. In terms of AUPRC,
two symbols and KB performed better for the CSP dataset. For the AHE, DBT, and EFIF
datasets, four symbols per variable performed better than other numbers of symbols atmaking
relatively early decisions, but as long as time went by, two symbols and KB closed the gap
and performed better at making relatively late decisions. The poor performance of the three
symbols per variable is related to the poor performance of the GRAD abstraction, which was
tested only with three symbols. Looking at the overall mean results, CPMs provided more
accurate predictions over time for TIRPs discovered using two symbols per variable or KB
than three and four symbols per variable.

Lastly, we evaluated the performance of a different number of symbols (two, three, four,
and a varied number of symbols for KB) only on TIRPs discovered using EWD and KB.
Figure22 presents the number of TIRPs per temporal abstraction and number of symbols
and the mean AUROC and AUPRC result over the instances’ revealed portions of time. Each
point on the graph represents the mean performance of the FCPM, at a instances revealed
portion of time, in providing the completions probabilities for the different TIRPs.

Figure22 shows the CSP and DBT datasets that were abstracted with EWD with two
symbols per variable resulting in more TIRPs that end with the target event than other
temporal abstraction methods. In contrast, for the AHE dataset, there was much difference
between the EWD or KB and the number of TIRPs. For the EFIF dataset, the different
number of symbols per variable resulted in a similar number of TIRPs. EWD with two and
four symbols per variable resulted in more accurate predictions over time. In addition, it can
be shown that FCPM provided more accurate predictions over time, in terms of AUROC,
for TIRPs discovered using KB for the CSP and AHE datasets. In contrast, for the DBT
dataset, FCPM provided less accurate predictions with KB. In addition, in terms of AUPRC,
FCPMperformed poorly with KB for the AHE andDBT datasets. For the DBT dataset, EWD
performed better than KB with all numbers of symbols. Overall, FCPM performed slightly
better over time for TIRPs discovered using EWDwith two symbols per variable. In contrast,
FCPM performed poorly over time for TIRPs discovered using EWD with four symbols per
variable.

In summary, the FCPMperformed better than the baselinemodels in terms of AUROC and
AUPRC.TheAUPRCperformanceof theSCPMwaspoor atmaking relatively early decisions
but improved as time went by.Moreover, FCPM provided less accurate predictions for TIRPs
discovered using GRAD and more accurate predictions for TIRPs discovered using KB and
EWD. While comparing the predictions over time provided by FCPM, TIRPs discovered
that using two symbols per variable or KB led to better results. More specifically, FCPM
performed slightly better over time for TIRPs discovered using EWD with two symbols per
variable.

References

1. Chang L, Wang T, Yang D, Luan H (2008) Seqstream: mining closed sequential patterns over stream
sliding windows. In: 2008 Eighth IEEE international conference on data mining, pp 83–92. IEEE

2. Höppner F (2001) Learning temporal rules from state sequences. In: IJCAI workshop on learning from
temporal and spatial data, vol 25. Citeseer

3. Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009) Mining frequent arrangements of temporal
intervals. Knowl Inf Syst 21(2):133

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4844 N. Itzhak et al.

4. Mordvanyuk N, López B, Bifet A (2021) Verttirp: robust and efficient vertical frequent time interval-
related pattern mining. Expert Syst Appl 168:114276

5. Harel O, Moskovitch R (2021) Complete closed time intervals-related patterns mining. In: Proceedings
of the AAAI conference on artificial intelligence, vol 35, pp 4098–4105

6. Sacchi L, Larizza C, Combi C, Bellazzi R (2007) Data mining with temporal abstractions: learning rules
from time series. Data Min Knowl Disc 15(2):217–247

7. Lu EH-C, Tseng VS, Philip SY (2010) Mining cluster-based temporal mobile sequential patterns in
location-based service environments. IEEE Trans Knowl Data Eng 23(6):914–927

8. Li K, Fu Y (2014) Prediction of human activity by discovering temporal sequence patterns. IEEE Trans
Pattern Anal Mach Intell 36(8):1644–1657

9. Moskovitch R, Shahar Y (2015) Classification-driven temporal discretization of multivariate time series.
Data Min Knowl Disc 29(4):871–913

10. Patel D, Hsu W, Lee ML (2008) Mining relationships among interval-based events for classification. In:
Proceedings of the 2008 ACM SIGMOD international conference on management of data. ACM, pp
393–404

11. Batal I, Valizadegan H, Cooper GF, Hauskrecht M (2013) A temporal pattern mining approach for clas-
sifying electronic health record data. ACM Trans Intell Syst Technol 4(4):1–22

12. Itzhak N, Nagori A, Lior E, Schvetz M, Lodha R, Sethi T, Moskovitch R (2020) Acute hypertensive
episodes prediction. In: International conference on artificial intelligence in medicine. Springer, pp 392–
402

13. Novitski P,CohenCM,KarasikA, ShalevV,HodikG,MoskovitchR (2020)All-causemortality prediction
in t2d patients. In: International conference on artificial intelligence in medicine. Springer, pp 3–13

14. Teinemaa I,DumasM,LeontjevaA,MaggiFM(2018)Temporal stability in predictive processmonitoring.
Data Min Knowl Disc 32(5):1306–1338

15. Teinemaa I, Dumas M, Rosa ML, Maggi FM (2019) Outcome-oriented predictive process monitoring:
review and benchmark. ACM Trans Knowl Discov Data 13(2):1–57

16. Di Francescomarino C, Ghidini C, Maggi FM, Milani F (2018) Predictive process monitoring methods:
Which one suits me best? In: International conference on business process management. Springer, pp
462–479

17. Henry KE, Hager DN, Pronovost PJ, Saria S (2015) A targeted real-time early warning score (trewscore)
for septic shock. Sci Transl Med 7(299):299–122299122

18. Schvetz M, Fuchs L, Novack V, Moskovitch R (2021) Outcomes prediction in longitudinal data: study
designs evaluation, use case in icu acquired sepsis. J Biomed Inform 117:103734

19. Sheetrit E, Nissim N, Klimov D, Shahar Y (2019) Temporal probabilistic profiles for sepsis prediction
in the icu. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 2961–2969

20. RyooMS (2011)Human activity prediction: early recognition of ongoing activities from streaming videos.
In: 2011 international conference on computer vision. IEEE, pp 1036–1043

21. Liu L, Wang S, Su G, Hu B, Peng Y, Xiong Q, Wen J (2017) A framework of mining semantic-based
probabilistic event relations for complex activity recognition. Inf Sci 418:13–33

22. Zhu G, Cao J, Li C, Wu Z (2017) A recommendation engine for travel products based on topic sequential
patterns. Multimed Tools Appl 76(16):17595–17612

23. da Silva Junior LLN, Kohwalter TC, Plastino A, Murta LGP (2021) Sequential coding patterns: how to
use them effectively in code recommendation. Inf Softw Technol 140:106690

24. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al (2020) Clinical features
of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395(10223):497–506

25. Itzhak N, Tal S, Cohen H, Daniel O, Kopylov R, Moskovitch R (2022) Classification of univariate time
series via temporal abstraction and deep learning. In: 2022 IEEE international conference on big data (big
data). IEEE, pp 1260–1265

26. Allen JF (1983) Maintaining knowledge about temporal intervals. ACM, New York
27. Moskovitch R, Shahar Y (2015) Fast time intervals mining using the transitivity of temporal relations.

Knowl Inf Syst 42(1):21–48
28. Kujala R, Weckström C, Darst RK, Mladenović MN, Saramäki J (2018) A collection of public transport

network data sets for 25 cities. Sci Data 5(1):1–14
29. Johnson AE, Pollard TJ, Shen L, Li-wei HL, FengM, Ghassemi M,Moody B, Szolovits P, Celi LA, Mark

RG (2016) Mimic-iii, a freely accessible critical care database. Sci Data 3:160035
30. Mirsky Y, Shabtai A, Rokach L, Shapira B, Elovici Y (2016) Sherlock vs moriarty: a smartphone dataset

for cybersecurity research. In: Proceedings of the 2016 ACM workshop on artificial intelligence and
security, pp 1–12

31. Höppner F (2002) Time series abstraction methods-a survey. In: GI Jahrestagung, pp 777–786

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Continuous prediction of a time intervals-related pattern’s... 4845

32. Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications
for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data
mining and knowledge discovery. ACM, pp 2–11

33. Bonomi L, Jiang X (2018) Pattern similarity in time interval sequences. In: 2018 IEEE international
conference on healthcare informatics (ICHI). IEEE, pp 434–435

34. Ho N, Pedersen TB, Vu M, et al (2021) Efficient and distributed temporal pattern mining. In: 2021 IEEE
international conference on big data (big data). IEEE, pp 335–343

35. Lee Z, Lindgren T, Papapetrou P (2020) Z-miner: an efficient method for mining frequent arrangements
of event intervals. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery and data mining, pp 524–534

36. ZhengW, Hu J (2022) Multivariate time series prediction based on temporal change information learning
method. IEEE Trans Neural Netw Learn Syst

37. Zheng W, Zhao P, Chen G, Zhou H, Tian Y (2022) A hybrid spiking neurons embedded lstm network for
multivariate time series learning under concept-drift environment. IEEE Trans Knowl Data Eng

38. Ramírez-Gallego S, García S, Mouriño-Talín H, Martínez-Rego D, Bolón-Canedo V, Alonso-Betanzos
A, Benítez JM, Herrera F (2016) Data discretization: taxonomy and big data challenge. Wiley Interdiscip
Rev Data Min Knowl Discov 6(1):5–21

39. Lin J, Keogh E,Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time series.
Data Min Knowl Disc 15(2):107–144

40. Yi B-K, Faloutsos C (2000) Fast time sequence indexing for arbitrary lp norms. In: VLDB. Citeseer, vol
385, pp 99

41. Keogh E, Chakrabarti K, Pazzani M, Mehrotra S (2001) Dimensionality reduction for fast similarity
search in large time series databases. Knowl Inf Syst 3(3):263–286

42. Freksa C (1992) Temporal reasoning based on semi-intervals. Artif Intell 54(1–2):199–227
43. Harris ZS (1954) Distributional structure. Word 10(2–3):146–162
44. Moskovitch R, Choi H, Hripcsak G, Tatonetti NP (2016) Prognosis of clinical outcomes with tempo-

ral patterns and experiences with one class feature selection. IEEE/ACM Trans Comput Biol Bioinf
14(3):555–563

45. Dvir O, Wolfson P, Lovat L, Moskovitch R (2020) Falls prediction in care homes using mobile app data
collection. In: International conference on artificial intelligence in medicine. Springer, pp. 403–413

46. Moskovitch R, Walsh C, Wang F, Hripcsak G, Tatonetti N (2015) Outcomes prediction via time intervals
related patterns. In: 2015 IEEE international conference on data mining. IEEE, pp 919–924

47. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J et al (2020) Scipy 1.0: fundamental algorithms for scientific computing in python.
Nat Methods 17(3):261–272

48. Freedman D, Diaconis P (1981) On the histogram as a density estimator: L 2 theory. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 57(4):453–476

49. Kalbfleisch JD, Prentice RL (2011) The statistical analysis of failure time data, vol 360. Wiley, New York
50. VerduijnM, Sacchi L, Peek N, Bellazzi R, de Jonge E, deMol BA (2007) Temporal abstraction for feature

extraction: a comparative case study in prediction from intensive care monitoring data. Artif Intell Med
41(1):1–12

51. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
52. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math

Biophys 5(4):115–133
53. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation.

Technical report, California Univ San Diego La Jolla Inst for Cognitive Science
54. Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proceedings of

the 23rd international conference on machine learning, pp 233–240
55. Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the roc plot when

evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3):e0118432
56. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Icml

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

4846 N. Itzhak et al.

Nevo Itzhak is a Ph.D. student in the Department of Software and Infor-
mation Systems Engineering at Ben-Gurion University of the Negev.
He has been awarded the Jabotinsky scholarship in applied science for
Ph.D. students by the Ministry of Science and Technology of Israel.
Nevo holds a B.Sc. and an M.Sc., both awarded Summa cum Laude, in
Software and Information Systems Engineering from Ben-Gurion Uni-
versity of the Negev. His research focuses on machine learning for tem-
poral data, specifically continuous prediction and classification in het-
erogeneous multivariate temporal data. He has also served on program
committees at several well-known artificial intelligence conferences.

Szymon Jaroszewicz is a professor at the Institute of Computer Science,
Polish Academy of Sciences, where he heads the Statistical Analysis
and Modeling Group. He is also with the Faculty of Mathematics and
Information Science, Warsaw University of Technology. He received his
Ph.D. from University of Massachusetts Boston in 2003, Doctor of Sci-
ence degree from Institute of Computer Science, Polish Academy of
Sciences in 2010, and the title of full professor in 2020. In 1998, he
received a Fulbright Scholarship. His main research interest is uplift
modeling which concerns building causal models based on treatment
and control groups, but he is also active in other areas of data mining
and statistical data analysis. He is an author of over 60 publications in
those fields. For many years, he has been a member of program commit-
tees of several prominent data mining conferences and is a member of
the editorial boards of Data Mining and Knowledge Discovery Journal
and Fundamenta Informaticae.

Robert Moskovitch : Prof Moskovitch is heading the Complex Data
Analytics Lab, as a faculty of the Department of Software and Infor-
mation Systems Engineering at Ben Gurion University, Israel. Before
his postdoc fellowship at the Department of Biomedical Informatics at
Columbia University in NYC, he headed several R&D projects in Infor-
mation Security at the Deutsche Telekom Innovation Laboratories. He
is the vice president of the international society of Artificial Intelli-
gence in Medicine (AIME), an Academic Editor at PLOS ONE, member
of the editorial board of the Journal of Biomedical Informatics (JBI),
and other. He was the co-chair of the international conference on Arti-
ficial Intelligence in Medicine (AIME) 2020. He serves on program
committees of conferences, such as ACM KDD, IJCAI, AAAI, UAI,
and AIME. He co-edited special issues at JASIST on Medical Informa-
tion Retrieval, JBI on Temporal Data Analytics, and JAIR on AI and
COVID-19, and AIMJ on AIME2020. He published more than hundred
peer-reviewed papers in leading journals and conferences, such as IEEE

ICDM, AAAI, Data Mining and Knowledge Discovery, Information Sciences, KAIS, JAMIA, and JBI, sev-
eral of which had won best-paper awards.

123

Isr
ael

-U
S BIR

D Fou
nd

ati
on

	Continuous prediction of a time intervals-related pattern's completion
	Abstract
	1 Introduction
	2 Background
	2.1 Temporal abstraction
	2.2 Temporal relations
	2.3 Frequent TIRP discovery
	2.4 Applications of frequent TIRPs
	2.5 Sequential patterns' completion

	3 Problem statement
	3.1 Problem formulation
	3.2 An overview of model estimation procedure
	3.3 The unfinished coinciding STIs challenge

	4 Methods
	4.1 TIRP unfolding over time
	4.1.1 The TIRP-prefixes revealer algorithm

	4.2 Generation of The TIRP-prefix's evolving TIRPs
	4.3 TIRP-prefixes' detection
	4.4 Continuous prediction models
	4.4.1 The segmented continuous prediction model
	4.4.2 The fully continuous prediction model

	4.5 Early warning strategies

	5 Evaluation
	5.1 Datasets
	5.1.1 The cardiac surgical patients (CSP) dataset
	5.1.2 The acute hypertensive episodes (AHE) dataset
	5.1.3 The diabetes (DBT) dataset
	5.1.4 The elderly first injury fall (EFIF) dataset

	5.2 Experiments
	5.2.1 Experimental setup
	5.2.2 Continuous TIRP's completion prediction

	5.3 Evaluation metrics

	6 Results
	7 Discussion and conclusions
	Acknowledgements
	Appendix A Efficient TIRP's candidates generator
	Appendix B Cutoffs used for the knowledge-based abstraction
	Appendix C imbalance ratio
	Appendix D Parameters of baseline models
	Appendix E Preliminary analysis
	E.1 TIRP's completion prediction relative to the end
	E.2 Analysis results

	References

